완결과제 최종보고서

사과 신품종 안정생산 및 품질향상 종합수익 모델

Profit model of apple new cultivars (Hongro, Gamhong) by stable production and fruit quality improvement

주관연구기관명

농촌진흥청

제출문
농촌진흥청 장 귀하

본 보고서를 “사과 신품종 안정생산 및 품질향상 종합수익 모델에 관한 연구”과제의 보고서로 제출합니다.

제1세부연구과제 : 사과 ‘감홍’ 품종의 종합기술 현장실증
제1협동연구과제 : 수출 사과 생산현장 안전성 확보 기술 점검
제2협동연구과제 : 뒤엉킬 봉근을 이용한 사과수분 현장 기술 점검
제3협동연구과제 : 사과 ‘홍로’ 고온기 미세살수에 의한 상품성 향상
제4협동연구과제 : 사과 신품종(홍로, 감홍) 안정생산 및 품질 향상기술 적용 및 효과 조사

2014. 02.

주관연구기관명 : 국립원예특작과학원
주관연구책임자 : 양상진
연구원 : 김성종
" : 나상수
" : 김경훈
제1협동연구기관명 : 국립농업과학원
제1협동연구책임자 : 전용덕
제2협동연구기관명 : 국립농업과학원
제2협동연구책임자 : 윤형주
제3협동연구기관명 : 충북농업기술원
제3협동연구책임자 : 이성희
제4협동연구기관명 : 영주시농업기술센터
제4협동연구책임자 : 이갑수

주관연구책임자 : 양상진
주관연구기관장 : 고관달
요 약 문

I. 제 목
○ 사과 신품종 안정생산 및 품질향상 종합수익 모델

II. 연구개발의 목적 및 필요성
○ 국내육성 사과 품종의 ‘홍로’와 ‘감홍’ 품종의 보급 확대를 위해서 개발된 재배관리 기술의 적용과 기술 보완의 필요성
○ 국내육성 품종의 수출을 늘리고 우수성을 홍보를 위한 안정성 확보
○ 사과 개화기 이상기온에 의한 결실불량 방지 및 수정률 향상

III. 연구개발의 내용 및 범위
○ 사과 ‘감홍’ 품종의 고두증상 방지 기술 실증
○ 사과 생산에 투입된 농자재 간류성변화 및 안전사용 시기선정
○ 뒤영벌을 이용한 사과 수분법 현장 기술 적용 및 실증
○ 미세살수 장치 개선 및 밀중상 경감 효율 증진 구명
○ 사과 신품종(홍로, 감홍)의 안정생산 및 품질향상 기술 실증

IV. 연구개발결과
○ 사과 ‘감홍’ 품종 품질 향상(고두증상 경감)을 위한 커피제 실포시기(영농활용)
○ 대만 수출용 사과 농약안전사용지침 설정 보급(영농활용)
○ 개화기 가상조건 불량시 사과수란에 적합한 화분배개근증 선발 및 이용법(영농활용)
○ 사과 홍로 밀중상 경감을 위한 미세살수와 염화갈슘의 병행처리 경감 효과(영농활용)

V. 연구개발결과의 활용계획
○ 국내육성품종의 고품질 안정생산 재배기술 확립으로 재배면적 및 농가소득 증대
○ 수출용 사과의 농약안전사용 지침 농가 지도 및 수출물량 확대
○ 이상기상 결실안정 및 품질향상을 위한 기술보급 농가 교육
SUMMARY

This project had been conducted for 2 years from 2012 to 2013 after it was sub-divided into the 5 tasks for the stable production and quality improvement of new breeds of apple that were "hongro" and "gamhong". This experiment had been conducted for 2 years from 2012 to 2013 at the 5 farmhouses located in Mungyeong, Gyeongsangbuk-do and Muju, Jeollabuk-do in order to reduce bitter pit of gamhong apple.

1. On-site demonstration of integrated production techniques for new apple variety, Gamhong

Experiments were conducted to reduce bitter pit in Gamhong apple during 2 years from 2012 to 2013 at 5 orchards located in Mungyeong, Gyeongsangbuk-do and Muju, Jeollabuk-do. Bagging and foliar application of CaCl₂ (74 %, 85 %) and OS-Ca (clam shell extract) were tested with compared to non bagging and non application. Bitter pit was found highest with 24.5% in no application of CaCl₂ plus bagging with general paper bag, whereas it was found to be significantly low with 7.5% and 6.5% in CaCl₂ application plus bagging with general paper bag or OS-Ca processed calcium bag, respectively. Even no application of CaCl₂ plus bagging with calcium bag showed high bitter pit ratio of 19.2%. As results, foliar application of calcium was found to be highly effective in reducing bitter pit, while there was no clear effect of each bagging treatment even though some effect of calcium bag was recognized in some treatments. Sugar contents of fruits were investigated to be 15.5–17.8°Bx in each bagging treatments in 2012. However, it was investigated to be 16.6–18.0°Bx if excluding D orchard in Mungyeong-eup, Mungyeong-si, where fruits harvested relatively earlier due to the high altitude. In 2013, it was lowered slightly to 14.2–16°Bx when bagged cultivation. Most fruits from unbagged cultivations showed 16°Bx. Therefore, "Gamhong" apple was expected to increasing sugar content of 1 to 2°Bx higher by no bagging cultivation compared to when bagging cultivation.

2. Safety Assurance of pesticides in production sites of apples for exports

The aim of this study was to investigate pesticide residues in apples for export to Taiwan, which have been collected from 10 farms in Geochang-gun. Multi-residue analysis of 83 pesticides was tested with the QuEChERS method by concurrent use of GC/TOFMS (gas chromatography/time-of-flight mass spectrometry). When the method was applied to apples, average results from at 2 spiking levels (50, 100 ng/g) fell into 76% and 126% recovery and relative standard deviation were under 15% for 83 pesticides. Among the compounds considered in this work, four pesticides, including chlorfluazuron, fluquinconazole, folpet, and etofenprox which were not listed in the positive list in Taiwan were detected in 80% of the total farms. However, the residue levels in positive system were below the maximum residue limits (MRL) in all the samples. The detected and most frequently found pesticide residues were etofenprox (7 times) and tebuconazole (5 times) followed by chlorfluazuron and chlorpyrifos (4 times).
The findings of this study showed that almost farms used etofenprox to control insects like carposina sasakii, plautia stali and halyomorpha halys and the farmers didn’t consider seriously when they select and use pesticides on apples for export to Taiwan.

3. Technique of apple pollination using bumblebee

It was surveyed the current status of commercial insect pollinators, for examples, bumblebees, honeybees and mason bees, use in apple crops in 2011. Total cultural area and the number of farmer with tomato were 4,488.5ha and 11,134, respectively. The use rate and number of colony of insect pollinators in tomato were 39.4% (4,384 farmers) and 31,431 colonies, respectively. In the use of insect pollinators, bumblebee was mostly used as pollinator that was 99.6~99.7%, however, honeybee was only 0.3~0.4%. Average used acres and periods per bumblebee colony were 569.3m² and 68.7±1.1 days, respectively. The number of colony per farmer was 7.3±0.3. Most tomato farmers expressed a positive intention as 79.1% in use of bumblebee for tomato pollination. The best advantage to the use of bumblebee use was reduction of cost and labor, which was 36.1% and the worst problem was high cost for pollinator purchase, which was 29.0%. And also, 97.1% of farmers intend to use continuously insect pollinators. Bumblebees are widely used to pollinate various crops, especially tomato, in greenhouses. Here we developed the newly pollinating method with bumblebee in apple orchard. Bumblebee colony have only 200~400 workers. To promote the efficiency of pollinating bumblebees, it was examined to qualify a bumblebee, Bombus terrestris colony for an end-product by recruiting with CO₂ treated foreign workers. There were no differences between colony with narcotized foreign workers and normal colony in colony development and foraging activity. In rate of fruit set and product amount of apple, the newly developed bumblebee colony was 6.5% and 10.1% more higher than mason bee, Osmia cornifrons, which is using as apple pollinator. Our results indicated that the developed bumblebee colony was suitable for apple pollinator, especially in low temperature and bad weather.

4. Enhancing marketability of new apple variety Hongro by applying mist sprinkler in hot summer season

The objective of this study were to clear up the efficiency of fog system and the application times of CaCl₂ for decrease in water core, one of the physiological disorders, into fruits of an apple cultivar 'Hongro'. Recently global warming occurs abnormally high temperature in summer and it induces water core to increase into fruits. Therefore, we introduced fog system to reduce temperature by exchanging of heat energy which decreases water core incidence and foliage spray of CaCl₂ to build up physico-chemical property.

We performed field experiments at 9 orchards end of June to Aug. in 2012~2013. The tested cultivar 'Hongro' was over 6-year-old trees. Elevation range of orchards were 126~306m and pH levels of soil were ranged by 4.1~7.7 and Ca2+ content range of soil were 0.9~9.5(standard contents of Ca2+ are 5~6). Fog system was sprinkled on 3.5L per a tree for half an hour twice at 6:00 and 8:00 p.m. when air temperature is over 28±1°C to 6:00
p.m. Also, CaCl₂ diluted by 0.3% was sprayed on foliage from one to five times by orchards. Water core incidences were indexed by 0~9.

The temperature of fruits and trunks showed higher than that of foliages. Fog system was sprinkled on average 25 times during the period. Temperature sprinkled by fog system was lower 0.5°C than that of control, regardless of the orchard environment. The fruit characteristics such as weight, sugar degree and acid content were no difference between treatments. However, severity of water core with fog system was reduced to average 18.2% (2012) and 15.6% (2013).

Foliage spray of CaCl₂ from 1 to 5 times reduced water core to 28.6%, 13.0%, 19.2%, 35.5% and 54.8% in 2012, respectively. Although the treatment 1 time of CaCl₂ in the highest located orchard was effective, the treatments over 4 times of that in lower orchards were more significant to decrease water core. In 2013, the treatments 4 times of CaCl₂ about all orchards reduced the occurred water core to 34.4%

To improve the effect of water core reduction, we tried to apply both fog system and the treatments 4 times of CaCl₂. The result showed that the combined application reduced the occurred water core to 43.8%. For analysis of yield based on fluorescence measurement of chlorophyll PSⅡ and starch content about new shoot among treatment plots, no difference was significantly showed.

In conclusion, the preceding results showed the possibility that both the sprinkling of fog system and foliage spray of CaCl₂ over four times makes water core reduced by exchanging heat energy and improving physicochemical property in tree.

5. Adaptation of some techniques for stable production and quality improvement and survey of their effects in production sites of new apple varieties, Hongro and Gamhong

Development of the domestic apple varieties 'Hongro' and 'Gamhong' penetration in the country has been low. In order to extend 'Hongro', 'Gamhong' apple orchards, we conducted this study to complement the already-studied cultivation technology and to develop cultivation techniques that can be applied directly to the field.

In 'Hongro' varieties if tree vigor is weak or fruit setting is too high, fruit quality such as sugar content and weight is poor. So when exposed to a height of 10cm rootstock, apple fruit setting 150ea per tree were suitable number and when exposed to its 15cm apple fruit setting 100ea were suitable number. Nonbagging treatment was superior fruit quality and production cost reductions.

In 'Gamhong' varieties tree vigor is strong, it is a much higher incidence of bitter pit because the tree vigor should be maintained properly. The fruit thinning kill leaving lateral fruits than center-bloom fruits and foliar spraying four times of 0.4% CaCl₂ were effective in reducing bitter pit. Fruit quality was excellent in little russet and good skin color in orchard of more than 400m above sea level.

In this study the technique of fruit quality improvement in 'Hongro', 'Gamhong' have to be investigated to be stable production and reduce production costs by applying the technique in the field.
목 차

제 1 장 서 론... 8
제 2 장 국내외 기술개발 현황... 12
제 3 장 연구개발수행 내용 및 결과.. 16
제 4 장 연구개발목표 달성도 및 대외기여도.. 84
 1절 목표대비 대외 달성도... 84
 2절 정량적 성과 ... 85
제 5 장 연구개발결과의 활용계획.. 85
제 6 장 연구개발과정에서 수집한 해외과학기술정보............................ 85
제 7 장 기타 중요 변동사항... 85
제 8 장 국가과학기술종합정보시스템에 등록한 연구장비 현황......... 86
제 9 장 참고문헌... 86
제 1 장 서 론

과수는 한번 심으면 한 곳에서 오랫동안 재배되기 때문에 새로운 품종이 보급되어 정착하기 까지는 상당한 기간이 소요된다. 국내 재배되고 있는 사과 품종 중 국내 육성품종은 약 12.3%로 보급이 저조한 실정으로, 국내육성 사과 품종은 '홍로'와 '감홍' 품종이 대부분을 차지하고 있는 데 육성품종의 보급 확대를 위해서는 개발된 재배관리 기술의 적용과 기술보완이 필요하다.

최근 우리나라의 지구온난화의 영향에 따른 여름철 고온현상으로 사과의 착색불량, 과실비대 감소, 산미의 감소, 과실의 영화 및 노화문제 등이 발생되고 있어 이런 기상조건에 대처해나갈 재배기술이 요구되고 있다.

또한 우리나라는사과의 수출을 늘리고 우수성을 알리기 위해서는 국내산 사과의 안전성 확보가 필수적이다. 2010년 대만수출사과에서 6회 연속 안전성위반으로 국내 생산사과에 대한 안전성검사를 20%에서 100% 전수검사 체제로 전환되어 대만, 일본 등 선진국에 수출하는 농 산물에 대한 안전성검사 강화로 매년 수백억의 검사비용 지출되고 있는 실정이다.

최근 이상기온 등으로 사과의 경우 개화기 이상기온으로 수정률이 감소하고 있는데 그 이유는 화분매개곤충 종류 및 개체수 감소, 특히 꿀벌의 경우, CCD 및 양충부패병 바이러스 등으로 많은 봉군 감소되고 있기 때문이다. 따라서 사과 개화기에 붕괴 기상조건에 적합한 화분매개곤충 개발로 사과 수정률을 향상시키고, 국외 사과의 우수성 입증을 위한 시범포 운영과 홍보가 필요하여 국내육성품종('홍로', '감홍')에 대해서 안정생산 및 품질향상을 위한 종합적 기술을 투입, 농가의 소득을 향상 위해 시험을 수행하게 되었다.

제 1절 : 사과 ‘감홍’ 품종의 종합기술 현장실증

과수는 한번 심으면 한 곳에서 오랫동안 재배되기 때문에 새로운 품종이 보급되어 정착하기 까지는 상당한 기간이 소요된다. 국내 재배되고 있는 사과 품종 중 국내 육성품종은 약 12.3%로 보급이 저조한 실정으로, 국내육성 사과 품종은 ‘홍로’와 ‘감홍’ 품종이 대부분을 차지하고 있는 데 육성품종의 보급 확대를 위해서는 개발된 재배관리 기술의 적용과 기술보완이 필요하다.

‘감홍’ 품종은 Spur EarlBlaze × Spur Golden Delicious 조합으로 선발된 품종으로 숙기간 10월 중순으로 ‘후지’보다 10일 빠른 중생종이며, 과중은 400g정도로 대과조이며, 당도가 17.8%로 감미와 산미가 조화되어 맛이 좋은 품종(신 등, 1995)으로 보고 되어있다. 그러나 ‘감홍’ 품종은 우수한 품질에도 불구하고 재배농가가 재배에 많은 어려움을 호소하고 있다. 그 이유는 고두증상과 동록의 발생이 심하기 때문이다.

과실의 고두 발생은 품종에 따라서 차이가 크게 나타나며, 국광 품종이 고두에 가장 악하며, 델리셔스, 스타킹델리셔스도 비교적 악하며, 갈슘수준이 낮은 적박한 토양에서 발생이 많다고 하였다(Totikada, 1977).

고두증상은 독일의 Jager(1869)가 저장 중 발생하는 cork장해를 처음 보고한 이래 여러 가지 명칭으로 불리어 왔으나, Cobb(1895)가 명명한 bitter pit이라는 용어가 가장 널리 사용되고 있다.(강, 2011). 고두증상은 수확기나 저장중에 나타나며, 초기에는 과피 표면의 일부가 약간 함몰되어 오목하게 되고 점진적으로 조직이 콜크화 되면서 발생부위가 갈색으로 변한다. 발생부위는 과실의 적도면 아래부위에서 발생되며, 이런 과일은 상품성이 떨어져 농가 소득에 큰 영향을 미치게 된다.
따라서 품질이 우수한 국내육성품종의 재배면적 확대와 재배상의 문제점을 해결하여 농가의 안정생산 및 품질향상을 위하여 종합적 기술을 투입, 농가의 소득 향상에 기여하고 현장실증 실험을 수행하게 되었다.

제 2절: 수출 사과 생산현장 안전성 확고 기술 접목
수출농업은 단순히 국내 농산물 해외에 수출하여 외화를 획득한다는 차원을 넘어 국내 농업과 농촌사회의 활락화 및 농업인의 자존감 회복, 그리고 국내 유통농산물의 가격안정 등 여러가지 측면에서 큰 의미를 갖는다. 우리농산물의 수출을 확대하기 위해서는 안전성이 확보된 고품질의 농산물 생산기술의 개발과 더불어 수출대상국의 식품안전기준에 적합하여야 하며, 특히 잔류농약은 농산물의 안전성을 평가하는 핵심적인 요구사항이다. 이에 세계 각국은 자국의 농업보호와 농산물 안전성 확보를 위하여 식품안전관리 제도 및 검역을 강화하고 이를 기술적 무역장벽으로 활용하고 있다. 우리농산물의 주요 수입국인 일본과 대만은 각각 2006년 6월과 2008년 10월부터 새로운 농식품안전관리 제도인 "Positive List System(PLS)"을 도입하여 잔류기준이 설정되어 있지 않은 농약 등이 대해서는 일률기준치 0.01ppm을 적용, 사실상 사용을 금지하고 있다. 실제 일본과 대만 양국의 PLS 시행 이후 한국산 파프리카, 사과 등에서 연이은 잔류농약 초과검출로 통관이 금지되는 사례가 급증하였고, 2014. 1월 현재 일본 수출 파프리카, 방울토마토, 홍고추와 대만 수출사과는 수입국으로부터 100% 전수검사 조치를 받고 있는 상태로 우리농산물의 수출확대에 큰 장애요인이 되고 있다. 특히 대만 수출사과는 PLS 시행 이후 2014.1월 현재까지 22회의 잔류농약 초과검출 사례가 발생하였으며, 2011.2.1부터 전수검사가 발동되어 수출량이 감소하는 등 수출확대에 어려움을 겪고 있다. 본 연구는 대만 수출사과를 중심으로 사과 수출대상국별 농약안전사용지침 설정·보급하고 수확기 잔류농약 모니터링 등 수출사과 생산현장에서의 농약사용 문제해결을 통하여 농가에서 수출용 사과병해충 방제를 위한 농약의 선택을 쉽게 하고 수출사과 안전관리기술의 개발을 통하여 사과 수출확대 및 국내 경쟁력 강화를 위해 수행하였다.

제 3절: 뒤엉벌 봉군을 이용한 사과수분 현장 기술 접목
최근 시설재배작물이 다양화되고 재배면적이 확대되면서 화분매개곤충의 중요성이 부각되고 있다. 상업용 화분매개곤충의 한 종류인 뒤엉벌은 1987년부터 시설채소 및 과수 등의 화분매개곤충으로 상품화되어 세계 각국에 수출되고 있으며, 2004년에는 전 세계의 뒤엉벌 생산량이 100만 상자 이상으로 추정되고 있다(de Ruijter, 1997; Free, 1993; Masahiro, 2000; Velthuis and Doorn, 2006).

뒤엉벌은 전사회성 곤충으로 영양, 일벌, 수벌로 이루어진 기본단위로 봉군을 형성하며 약 1000마리로 구성된다. 일벌은 가을에 교미한 후 월동하여 이듬해 봄 태줄에 산란하고 화밀, 화분채취 등 스스로 육아임무를 담당한다. 그러나 첫째의 일벌이 출현하면 영양벌은 방화
활동을 중단하고 산란에 전념한다. 우화한 일벌이 육아를 담당하기 시작하면 빠른 속도로 봉세가 확장되어 2-3개월 내에 최성기에 달한다. 가을철이 되면서 수벌과 신여왕벌이 출현하여 생식기에 접어든다. 이 시기를 전후하여 창설여왕벌을 포함하여, 일벌, 수벌이 차례로 죽는다. 단지 교미를 끝낸 신여왕벌만이 살아서 봄속에 잔류하여 휴면에 들어가는 1년에 1세대인 생식자를 가지고 있다(Heinrich, 1979, Duchateau and Velthusis, 1988). 전통수분형 벌인 뒤영벌은 꽃이 없는 가지와 식물 특히 토마토, 가지에 효과적이며, 비닐하우스 등 좁은 공간에 대한 적응성이 높은 특징이 있다. 또한 꽃벌에 비하여 저온 및 악천후에 활동성이 높아 복화활동이 우수하며 공격성이 약하기 때문에 시설과채류 농가에게 화분매개에 필요한 노동력을 절감시키고, 질적, 양적으로 우수한 상품을 제공하는 장점을 가지고 있다(Buchmann and Hurley, 1978; Iwasaki, 1995).

자가불화합성 작물인 사과(Malus domestica Borkh.)는 식물분류학상 장미과(Rosaceae) 배나무아과(Pomoideae) 사과나무속(Malus)에 속하는 온대 낙엽성 과수로서, 세계적으로 널리 분포하고 있다(Janick et al., 1996). 우리나라의 사과 재배면적과 생산량은 90년대 중반을 정점으로 지속적으로 감소하였으나, 2002년을 시작으로 새로운 품종과 가공제품 등이 개발되었으며, 그 근본 소비가 다시 증가하는 추세이다(RDA, 2010). 사과재배농가들은 사과의 결실율을 높이기 위하여 인공수분(Kim et al., 2003), 수분수용 꽃사과(Ha and Shim, 1995; Kang et al., 2002) 또는 화분매개곤충(Matin and McGregor, 1973; Robinson, 1979; Bosch and Blas, 1994)을 이용하고 있다. 사과의 수분을 위해 화분매개곤충을 이용할 경우, 결실율 약성, 품질향상 및 노동력 절감 효과가 뚜렷하게 나타난다고 보고하였다(Bosch and Blas, 1994; Lee at al., 2008; RDA, 2010). 사과꽃 개화시기에 사과수분을 위하여 사과재배농가의 80%가 자연방화 또는 계획적으로 화분매개곤충을 이용하고 있으며, 사과원의 방화곤충 중 벌목의 주요 방화종은 꽃벌이 50-74%, 그 다음이 머리뿔가위벌이라고 보고하였다(Lee at al., 2000; Lee at al., 2008). Hong 등(1989)은 수원지역 과수원의 방화곤충 중 꽃벌이 50.2%, 꽃등에류가 33.1%라고 보고하였다. 사과원에서 이용하고 있는 한국산 빨가위벌류는 8종이 있고, 산지와 사과원에서 각각 5종이 분포하고 있으며, 주요 종은 머리뿔가위벌, 빨가위벌, 붉은뽕가위벌 3종인 것으로 나타났다(Kwon et al., 1997; Lee at al., 2002).

최근 고품질 안전 농산물에 대한 소비자들의 관심고조로 친환경 농업에 대한 관심이 높아지고 있으며(Yoon et al., 2008), 농약 등 유해 물질의 잔류가 없는 안전성이 품질 결정의 중요한 요소로 평가되고 있다(Mantinger, 2002). 이러한 이유로 사과작목에서 친환경 안전농산물 생산은 화분매개곤충을 이용한 화분매개곤충에 대한 관심이 높아지고 있다(Yoon et al., 2012). 하지만 화분매개곤충 시설의 간소화와 환경 및 기후변화에 따라 화분매개곤충의 다양성과 수가 점차 감소하고 있는 것으로 나타났다(Batra, 1996; Golson et al., 2008; Williams and Osborne, 2009; Rao and Stephen, 2010).

사과 수분을 위해 화분매개곤충으로는 주로 꽃벌과 빨가위벌류가 이용되고 있으나, 최근에는 지구온난화에 따른 기후변화로 사과재배기에 저온 등 기상변화로 사과수분에 문제가 많이 발생하고 있다. 이러한 문제를 해결하기 위해 일반적으로 저온에 강하다는 뒤영벌의 장점을 이용하여 시설과채류에 주로 사용하던 것을 사과의 수분을 위해 사과 수분을 이용하는 방법을 개발하고자 하였다.
제 4절 : 사과 ‘홍로’ 고온기 미세살수에 의한 상품성 향상

따라서, 본 연구에서는 사과 ‘홍로’ 품종에서 문제되는 밀증상을 줄이기 위해 기존 연구를 충북지역 농가 현장에 접목하여 밀증상 경감 효율을 증대시키고자 한다.

제 5절 : 사과 신품종(홍로, 감홍) 안정생산 및 품질 향상기술 적용 및 효과 조사

국내 재배되고 있는 사과 품종 중 국내 육성 품종은 약 12.3%로 보급이 저조한 실정이다. 국내육성 사과 품종은 ‘홍로(Hongro)’와 ‘감홍(Gamhong)’ 품종이 대부분을 차지하고 있는데 농촌진흥청원예연구소에서 스페어리 블레이즈에 스퍼골든데리셔스를 교배하여 각각 1988년 및 1992년에 최종 선발한 신육성 사과 품종이다. 우리나라 기후 풍토에 적합하도록 육성된 두 사과품종 모두 가지의 모양은 개장성으로 절간장이 짧고 단과지 발생이 많은 스퍼타입 품종으로 열과 수확 전 낙과발생이 없어 상품화 비율이 높다. 국내 전 지역에서 홍로는 착색 및 품질이 우수한 다수성 품종으로 또한 감홍은 당도가 극히 높고, 육질이 연하고 식미가 우수한 특성을 가지고 있다. 최근 홍로 및 감홍 신품종의 재배면적이 증가추세에 있고 홍로는 추석 출하용으로써 농가의 소득 증대에 기여하고 있고, 감홍은 과피가 선홍색 줄무늬로 착색되어 외관이 우수하고 또한 감홍의 상온 저장력은 후지보다 다소 약하지만 60일 정도의 저장력이 강한 우수한 품종이다.

그러나 홍로 품종은 밀증상 발생이 많고, 잎에 가리거나 그늘 속의 과실은 착색이 불량해지기 쉽다. 수확이 빠르기 때문에 여러 가지 장해발생이 많고 탄저병과 점무늬나무병, 역병에 약한 단점이 있다. 감홍 품종은 동숙 발생이 심하고, 과실에 고두병으로 여겨지는 과피 반점의 생리장해가 심하게 발생하고 있어 많은 사과 재배자들이 재배를 기피하고 있는 경향으로 재배 면적이 증가하지 못하는 이유이다. ‘홍로’와 ‘감홍’ 품종의 안정적인 생산 및 보급 확대를 위해서는 개발된 재배관리 기술의 적용과 기술보완이 필요하다.
제 2 장 국내외 기술개발 현황

홍로품종은 국내에서 육성된 최초의 사과로 수확기는 9월 상중이며, 대과는 밀증상 발생이 많고, 수세가 떨어지면서 여러 가지 생리상태 발생이 증가하며, 감홍품종은 10월 상중순에 수확하는 중생종으로, 과실의 내부 품질은 우수하나 고두발생이 많고 무대재배시에는 동녹 발생이 많은 문제점을 가지고 있어서 농가에 제재에 어려움을 이야기 하고 있다.

홍로품종에서 밀증상은 고온기(주간 30℃이상, 야간 25℃이상)에 발생하는데, 열대야 예보일에 미세살수장치를 가동하여 18시부터 2시간 간격으로 30분간 2회 살수하면 밀증상을 30%경감할 수 있다(2008, 박 등)는 보고가 있으며, 감홍품종은 고두증상 경감을 위해서 염화칼슘 2회 살포 후 칼슘(6%) 함유 봉지를 채우는 것이 효과적이며(2006, 양 등), 무대재배시 만개후 45일째에 염화칼슘 0.3%를 7일 간격으로 연속 4회 살포하면 고두병 발생이 경감되고, 엽내 칼슘함량이 증가하여 과실의 품질도 양호하였다(2012, 강 등)는 결과가 보도되었다.

과수의 결실안정을 위하여 체리, 블루베리, 자두 등 많은 과종에 뒤영벌 수분 효과시험을 거쳐 좋은 결과를 얻었으며, 뒤영벌 사육기술 정착을 위해 3종류의 설탕(백색설탕, 갈색설탕, 흑색설탕)에 대한 뒤영벌의 봉세 발달 조사결과, 백색설탕의 산란율, 봉군형성률 및 신여왕벌출현봉군율이 갈색설탕과 흑색설탕보다 1.1∼3.0배 증가된 결과(2012, 윤 등)를 얻었다.

제 1절: 사과 ‘감홍’ 품종의 종합기술 현장실증

‘감홍’품종은 10월 상중순에 수확하는 중생종으로, 과실의 내부 품질은 우수하나 고두발생이 많고 무대재배시에는 동녹 발생이 많은 문제점을 가지고 있어서 농가에 제재에 어려움을 이야기 하고 있다.

사과의 고두증상 발생원인이 칼슘이 관여한다는 것이 밝혀지면서 다른 반점성 장해와 칼슘과의 관계에 대한 연구가 계속되고 있다. 과실중 칼슘은 세포벽의 보철물질의 카르복실기와 결합하여 물에 불용성인 칼슘액타이드를 형성하고 있는데, 칼슘이 부족하면 그현성이 방해되어
세포벽사이에 전분립이 축적된다. 이것이 칼슘부족에 의하여 전분이 당으로 가수분해되는 과정이 저해되어 일어나는 현상이라고 하며 칼슘중상의 원인이 된다고 한다(권 등, 2013).

고두증상 경감을 위하여 미국에서는 6월 초순에서 8월 중순까지 2~3주 간격으로 CaCl₂를 0.4~0.5% 농도로 5~8회 살포하면 고두증성이 경감된다(Bramlage, 1994).

고두증상은 품종에 따라서도 많은 차이를 보이지만 특히 '감홍' 품종은 고두증상 발생이 많아 재배농가들이 많은 어려움을 호소하고 있는 실정으로 '감홍' 품종의 재배면적을 확대하기 위해서는 우선적으로 해결해야 할 과제이며, 국내육성 품종의 재배면적 확대를 위해 품종별 적절한 재배매뉴얼 확립은 필수적이라 할 수 있을 것이다.

제 2절: 수출 사과 생산현장 안전성 확고 기술 접목

광우병과 조류 인플루엔자 파동을 계기로 식품안전성에 대한 소비자의 관심이 높아지면서 세계 각국은 자국의 농업보호와 농산물의 안전성 확보를 위하여 농식품 안전관리제도를 강화하여 수입농산물에 대한 검역을 강화하고 이를 기술적 비관세 무역장벽으로 활용하고 있다. 현재 세계 주요 국가로는 일본, 대만, 유럽연합 등 주요 선진국에서 시행하고 있는 Positive List System(PLS)과 미국에서 적용하고 있는 Zero Tolerance 제도이다. Positive List System은 기준이 설정되지 않은 농약 등 유해물질이 일정량 이상 잔류하는 식품의 판매 등을 원칙적으로 금지하는 제도로서 리스트에 포함되지 않은 유해성분은 일률기준치 0.01ppm을 적용하여 사실상 사용할 수 없게 된다. 미국 의 Zero Tolerance System은 자국에 허용기준이 설정되지 않은 농약 등에 대해서는 불검출 원칙으로 하는 제도이다. 실제 최근 3년간 한국산 신선농산물에 대한 수입국 통관과정 중 농약안전사용지침에 따라 농약검출이 0.01ppm을 초과하는 농약검출사례는 60여회로 대입 수출 과파리가와 방울토마토, 대입 수출 사과, 배 등에서 연이어 전류농약이 초과검출됨에 따라 통관규제 및 검사명령(100% 전수조사)이 발동되는 등 농약검출사례가 증가하고 있다(전 등, 2009). 농조선교정은 이러한 수출환경에 대응하기 위하여 2003년부터 농약검출사례는 0.01ppm을 초과하는 농약검출사례를 설정하여 보급하고 있으며 주기적으로 전류농약 모니터링을 통하여 수출농산물 안전성 확보에 기여해 오고 있다.

우리나라는 1968년부터 전류농약 모니터링을 실시하였으며, 현재는 국내 및 수입농산물에 대한 전류농약 모니터링을 국가적 차원에서 계속사업으로 매년 실시하고 있고, 병아미검출된 경우 농부들의 농약사용 안전기준 준수를 위해 농림부에 통보하고 있으며, 농약전류허용기준 제·개정의 기초 자료로 활용하고 있다(김 등, 2009).

농산물 중 전류농약을 신속하게 분석하기 위한 전처리법 중 미국농업연구청(Agricultural
국외 연구 현황

일본은 1940년대에 머리뿔가위벌(Osmia cornifrons Radoszkowski)을 아오모리현의 사과원에서 처음 사용하기 시작하였다.
제 4절 : 사과 ‘홍로’ 고온기 미세살수에 의한 상품성 향상

밀증상을 감소시키기 위한 방법으로 수확전에 AVG(Petri et al., 2006; Walins, 2003), 1-MCP(Yuan and Li, 2008), 염화갈슘(Fallahi et al., 1997; Fukuda, 1984; Marlow and Loescher, 1984; Park et al., 2009), 미세살수(Park et al., 2009; Song et al., 2010)를 하는 방
법 등의 기술이 개발되었다.

제 5절 : 사과 신종(홍로, 감홍) 안정생산 및 품질 향상기술 적용 및 효과 조사

내외 대표적인 육성 품종으로 1990년대 육성된 ‘홍로’, ‘감홍’이 전국적으로 약 13% 정도 보급되어 추세를 전후하여 출하되는 중생종 ‘홍로’는 전북 장수와 무주에서 지역특화 품종 으로 자리매김하여 각각 사과 재배면적의 약 86%를 차지하였고, 이 지역의 ‘홍로’ 품종은 서울 농산물도매시장에서 프리미엄이 형성되어 농가 소득 향상에 크게 기여하고 있다.

홍로 품종의 경우 보급 초기 즙기검무늬복음병, 탄저병, 수세 초약 등의 문제점이 발견되었으나 적정 수분관리, 전용 방재력 개발, 조기 적화 및 서비 등 적극적인 재배기술개발로 지역특화 품종의 기초를 마련할 수 있었다.

‘홍로’ 사과는 국내에서 육성된 최초의 사과로 수확기는 9월 상중이며, 대과는 밀증상 발생이 많고, 수세가 떨어지면 여러 가지 생리장애 발생이 증가하여 밀증상 발생에 관한 연구가 추진되어 경감 기술 및 품질향상 재배기술에 관한 연구가 추진되어 왔다.

‘감홍’ 사과는 10월 상중순에 수확하는 중생종으로, 과실의 내부 품질은 우수하나 고두발생이 많고 무대 재배 시에는 동록 발생이 많아 고두병 발생 원인과 경감에 관한 기술 개발, 동록 발생 원인과 경감에 관한 기술 개발, 수세안정 기술에 관한 연구 등이 추진되고 있다.

‘홍로’ 품종의 밀증상과 관련하여 수확전 밀증상 경감에 AVG 처리(Petri et al., 2006; Walkins, 2003), 1-MCP 처리에 의한 저장 중 밀증상 경감기술 연구(Yuan and Li, 2008), 생육기 CaCl2 처리에 의한 밀증상 연구(Fallahi et al., 1997; Fukuda, 1984) 등이 추진되었고, ‘감홍’ 품종의 고두병과 관련하여 사과 고두병 중증은 칼슘부족에 의해 발생되는 것으로 알려져 칼슘 처리에 대한 연구가 많이 진행되었다. 칼슘의 xylem을 통한 이동은 다른 양이온과 다르며 (Levitt, 1969), 칼슘의 phloem을 통하여 이동한다고(Long, 1990; Stebbins, 1972; Tomala, 1990) 하였다. 수체 살포한 칼슘은 엽의 기공을 통하여 이동하며(Schlegel, 2002, 2005), 과실이 어릴수록 과실 표면을 통한 칼슘의 투무응이 높다(Schlegel, 2002)고 하였다. 고두증상 경감을 위하여 미국에서는 6월 초순에서 8월 중순까지 2~3주 간격으로 CaCl2를 0.4~0.5% 농도로 5~8회 살포하면 고두증상이 경감된다(Bramlage, 1994)고 하였다.

해외 사과산업의 경우 사과 생산국별로 품종 육종을 적극적으로 추진하여 해외로 보급하 고자 많은 노력을 기울이고 있다. 국내 육성 품종인 ‘홍로’, ‘감홍’ 품종의 안정적인 재배기 술을 적극 검토, 적용하여 국외에서도 안정적으로 생산 가능하도록 하여 해외로 품종을 수출하는 노력이 필요하다.
제 3 장 연구개발 수행 내용 및 결과

제 1절 : 사과 ‘감홍’ 품종의 종합기술 현장실증

1. 재료 및 방법

가. 시험 장소 및 농가 현황

과수원은 수세 안정을 위하여 화학비료 무시용 및 되비 최소화하여 관리 하였다.

나. 시험처리 시기 및 방법

시험은 유대재배(봉지재배) 농가와 무대재배(무봉지재배) 농가로 나누어 수행하였는데 무대재배의 경우는 관행(염화칼슘 74%), 염화칼슘(85%), OS-Ca(조개껍질 추출)을 엽면시비하였다. 유대재배의 경우 칼슘 함유봉지와 일반봉지 처리구를 각 처리구에 두어 칼슘함유봉지의 효과를 비교하였으며, 염화칼슘은 0.3~0.5%로, OS-Ca는 500배액, 관행은 74% 염화칼슘 0.3~0.5%, 일반판매용 칼슘제 1,000배액을 엽면시비 하였다. 각각의 처리는 4회 정도 시기에 맞추어 처리하였으며, 유대재배의 경우 봉지를 써우기전 3~4회 엽면시비 하였다.

표 1. 시험처리 지역 및 처리시기

<table>
<thead>
<tr>
<th>봉지 유무</th>
<th>지역</th>
<th>처리 내용</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>유대재배</td>
<td>문경시 가온읍 (A농가)</td>
<td>염화칼슘(0.5%) 4회처리+ 일반봉지</td>
<td>calibrated calcium carbonate (400% CaCO₃) + calcium fertilizer</td>
</tr>
<tr>
<td></td>
<td>문경시 가온읍 (B농가)</td>
<td>염화칼슘(0.5%) 4회처리 + 칼슘봉지</td>
<td></td>
</tr>
<tr>
<td></td>
<td>문경시 가온읍 (C농가)</td>
<td>염화칼슘(0.5%) 4회처리 + OS-Ca(500배액), 조개껍질 추출</td>
<td></td>
</tr>
<tr>
<td></td>
<td>문경시 가온읍 (D농가)</td>
<td>관행처리</td>
<td></td>
</tr>
<tr>
<td>무대재배</td>
<td>문경시 가온읍 (B농가)</td>
<td>염화칼슘(0.5%) 4회처리</td>
<td></td>
</tr>
<tr>
<td></td>
<td>문경시 가온읍 (C농가)</td>
<td>염화칼슘(0.5%) 4회처리 + OS-Ca(500배액)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>문경시 가온읍 (D농가)</td>
<td>관행처리</td>
<td></td>
</tr>
</tbody>
</table>

* D농가 : 2012년 처리, E농가 : 2013년 처리

엽면시비 시기는 유대재배의 경우 2012년에는 1차 5월 15, 2차 6월 1일, 3차 6월 8일 4차 6월 15일에 처리하였으며, 2013년에는 개화가 다소 늦어 1차를 5월 15일에 처리하고 7일
간격으로 3회 더 처리 하였다.
무대체배의 경우 1차를 5월 25일, 6월 4∼5일에 처리 하였으며, 7일 간격, 10일 간격, 15일 간격 등으로 나누어 처리 하였다.

표 2. 엽면시비 시기

<table>
<thead>
<tr>
<th>지 역</th>
<th>처리시기(월/일)</th>
<th>봉지 전(월/일)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 농가</td>
<td>2012년</td>
<td>5/20 6/01 6/08 6/15</td>
</tr>
<tr>
<td></td>
<td>2013년</td>
<td>5/15 5/22 5/29 6/5</td>
</tr>
<tr>
<td>B 농가</td>
<td>6/5 6/12 6/19 6/26</td>
<td>-</td>
</tr>
<tr>
<td>C 농가</td>
<td>6/5 6/15 6/25 7/5</td>
<td>-</td>
</tr>
<tr>
<td>D 농가</td>
<td>5/25 6/4 6/18 7/2</td>
<td>-</td>
</tr>
<tr>
<td>E 농가</td>
<td>6/4 6/14 6/24 7/4</td>
<td>-</td>
</tr>
</tbody>
</table>

* D농가 : 2012년 처리, E농가 : 2013년 처리

다. 토양 및 엽분석
분석용 토양 및 엽시료 2013년 8월 8일에 채취하였으며, 농가는 문경시 가은읍 2농가, 문경시 문경읍 1농가, 무주군 적성면 1농가이었다. 채취된 토양은 채취 당일 농업기술실용화재단에 보내어 토양 및 엽 무기성분을 분석하였으며, 엽시료는 처리구별 평균이 되는 나무를 5주 선정하여 가습위치의 엽을 동서남북으로 나누어 채취하였으며, 토양은 나무 원줄기에서 50cm 떨어져 20cm의 깊이의 토양을 5곳에서 채취하였다.

라. 과실특성 분석
과실특성은 10월 중순에 각각의 처리구에서 5나무를 선정하여 주당 30개씩의 과일을 수확한 후 무게, 당도, 산도를 측정하였으며, 고두발생정도는 처리구별 5나무 전수조사를 하였다. 과실의 당도는 디지털당도계(PR-100, Atago Co. Ltd, Tokyo, Japan)로 측정하였고, 산 함량은 과즙 1㎖를 증류수 49㎖로 희석하여 이온분석기(809, Titrando, Metrohm, Ltd, Herisau, Switzerland)로 분석하였다. 과실의 경도는 물성분석기(TA Plus, LLOYD
마. 노동력 절감 및 소득분석
노동력 및 경영비용은 '2012 농축산 소득자료집'을 참고하였다.

2. 결과 및 고찰
가. 토양 및 엽 무기성분 분석
시험 농가의 재배현황 및 토양의 상황을 파악하기 위하여 토양 및 엽 무기성분을 분석하였다. 토양 화학성분의 분석을 위해, 토양의 pH는 기준치 6.0~6.5보다 다소 높은 6.3~7.3이었으며, 문경시 가은읍 2농가가 7.1, 7.3으로 다소 높은 경향을 보였다. 토양무기물은 22.1~39.7(g/kg)로 기준치 25~35(g/kg)에 가까웠으며, 가운데 A농가가 다소 낮았고 무주군 적성면 농가에서 다소 높은 경향이었다. '감홍' 품종의 고두증상은 수세가 강할수록, 시비량이 많을수록 많이 발생하기 때문에 절충제가 다소 많은 문경시 가은읍농가가 수세 안정을 위해 퇴비등 유기물을 적게 시비한 것으로 보이며, 무주군 적성면 농가는 대과생산의 과실 생산을 위하여 다소 강한 시비가 있었던 것으로 보이며, 시험 전 2012년 12월 농가에게 퇴비 및 화학비료 시비를 금하도록 지시하였다.

유모인산은 시험처리 전 농가에서 기준치인 200~300(mg/kg)보다 높은 330.0~639.4(mg/kg)로 분석되었지만 타 품종('후지') 재배 과원보다는 안정된 경향이었다. 무주농가가 639.4(mg/kg)로 다른 시험 농가보다 높았다. K는 문경시 가은읍 2농가는 기준치 0.3~0.6(cmol/kg)범위 안에 있었으나, 문경시 문경읍과 무주군 적성면 농가에서 다소 높은 1.2~1.5(cmol/kg)였다. Mg 역시 문경시 가은읍 농가가 2농가보다 문경군과 무주군 적성면 농가에서 높았다. Ca은 전반적으로 기준치 5~6(cmol/kg)보다 높은 7.2~10.4(cmol/kg)이었는데 이는 고두증상 발생 경향을 위하여 그동안 많은 석회시비가 있었기 때문으로 해석된다. 전반적인 토양 무기성분은 '감홍' 품종의 재배 경험이 많은 문경시 가은읍 2농가가 기준치에 가까웠으며, 특히 대과생산을 위해 시비량이 많았던 무주군 적성면 농가에서 기준치를 상회하는 성분이 많이 분석 되었다.

<table>
<thead>
<tr>
<th>봉지유무</th>
<th>지 역</th>
<th>pH</th>
<th>유무기물 (g/kg)</th>
<th>유효인산 (mg/kg)</th>
<th>K (cmol/kg)</th>
<th>Ca (cmol/kg)</th>
<th>Mg (cmol/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>무대 재배</td>
<td>문경시 가은읍(A농가)</td>
<td>7.3</td>
<td>22.1</td>
<td>404.4</td>
<td>0.5</td>
<td>9.1</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>문경시 가은읍(B농가)</td>
<td>7.1</td>
<td>28.7</td>
<td>390.0</td>
<td>0.3</td>
<td>10.4</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>문경시 문경읍(C농가)</td>
<td>6.3</td>
<td>32.7</td>
<td>464.0</td>
<td>1.2</td>
<td>7.2</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>무주군 적성면(D농가)</td>
<td>6.9</td>
<td>39.7</td>
<td>639.4</td>
<td>1.5</td>
<td>10.1</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>기준치</td>
<td>6.0~6.5</td>
<td>25~35</td>
<td>200~300</td>
<td>0.3~0.6</td>
<td>5~6</td>
<td>1.2~2.0</td>
</tr>
</tbody>
</table>

* 시료채취 : 2013. 8. 8

2012년 엽종 무기성분 함량 분석결과 질소는 기준치 2.33~2.71(%)에서 크게 벗어나지 않았으며, 관행처리구와 염화칼슘 처리구가 OS-Ca 처리구보다 다소 높게 나타났으나, 무처리 2.37%와 비교하여보면 처리별 차이라고 볼 수가 없었다.
표 4. 엽중 무기성분(2012년)

<table>
<thead>
<tr>
<th>봉지유무</th>
<th>지역</th>
<th>처리 내용</th>
<th>N (%)</th>
<th>P (%)</th>
<th>K (%)</th>
<th>Ca (%)</th>
<th>Mg (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>무대재배</td>
<td>문경시가음(A농가)</td>
<td>엽화칼슘(0.5%) 4회 처리</td>
<td>2.19ab</td>
<td>0.17b</td>
<td>1.39b</td>
<td>1.41a</td>
<td>0.36a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>칼슘제(OS-Ca) 4회 처리</td>
<td>2.16b</td>
<td>0.22a</td>
<td>1.92b</td>
<td>1.54a</td>
<td>0.37a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>관행재배(칼슘제) 4회처리</td>
<td>2.26a</td>
<td>0.21a</td>
<td>1.90a</td>
<td>1.26a</td>
<td>0.41a</td>
</tr>
<tr>
<td></td>
<td>문경시가음(B농가)</td>
<td>엽화칼슘 4회처리</td>
<td>2.32ab</td>
<td>0.16b</td>
<td>1.41e</td>
<td>1.84a</td>
<td>0.43a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>칼슘제(OS-Ca) 4회처리</td>
<td>2.23de</td>
<td>0.15d</td>
<td>1.75dc</td>
<td>1.29c</td>
<td>0.34bc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>관행살포제(칼슘제 4회처리)</td>
<td>2.30abc</td>
<td>0.18a</td>
<td>2.03bc</td>
<td>1.25c</td>
<td>0.37b</td>
</tr>
<tr>
<td></td>
<td>유대재배</td>
<td>문경시가음(C농가)</td>
<td>엽화칼슘 4회처리</td>
<td>2.38a</td>
<td>0.15c</td>
<td>1.49e</td>
<td>1.40bc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>칼슘제(OS-Ca) 4회처리</td>
<td>2.28bc</td>
<td>0.14e</td>
<td>2.31ab</td>
<td>1.41bc</td>
<td>0.26de</td>
</tr>
<tr>
<td></td>
<td></td>
<td>관행 살포제(칼슘제 4회처리)</td>
<td>2.30abc</td>
<td>0.18a</td>
<td>2.03bc</td>
<td>1.25c</td>
<td>0.37b</td>
</tr>
<tr>
<td></td>
<td>문경시가음(D농가)</td>
<td>엽화칼슘 4회처리</td>
<td>2.38a</td>
<td>0.16cb</td>
<td>1.31de</td>
<td>1.43b</td>
<td>0.36b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>칼슘제(OS-Ca) 4회처리</td>
<td>2.15d</td>
<td>0.18a</td>
<td>2.36a</td>
<td>1.73a</td>
<td>0.30de</td>
</tr>
<tr>
<td></td>
<td></td>
<td>관행 살포제(칼슘제 4회처리)</td>
<td>2.37a</td>
<td>0.18a</td>
<td>2.03bc</td>
<td>1.25c</td>
<td>0.37b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>기준치('후지'기준)</td>
<td>2.33~</td>
<td>0.12~</td>
<td>1.18~</td>
<td>0.85~</td>
<td>0.23~</td>
</tr>
</tbody>
</table>

P는 모든 처리구에서 기준치 0.12~0.21% 안에 있으며, 처리별 차이를 볼 수 없었다. K는 관행 살포구와 OS-Ca살포구가 무처리 1.31% 와 엽화칼슘처리구보다 대부분의 농가에서 높게 분석되어 연관성이 있는 것으로 나타났다. Mg는 무처리 0.37%와 비교해 볼 때 처리별 큰 연관성이 없는 것으로 나타났다. Ca함량은 처리구 모두 무처리 1.07%보다 높게 나타났으며, B농가에서는 엽화칼슘처리구가 1.87%로 관행 1.25%, OS-Ca처리 1.29%보다 높게 나타났으며, A, C농가에서는 차별성이 없었고, D농가에서는 오히려 OS-Ca처리구가 엽화칼슘 처리구보다 높게 나타났다. 따라서 칼슘제 엽면비는 무처리보다 엽중 Ca함량을 높이는 효과가 인정되며, K의 경우 엽화칼슘보다 관행이나 OS-Ca처리구가 엽중 함량이 높았다. 2013년의 경우도 비슷한 결과 이었다.

표 4. 엽중 무기성분(2013년)

<table>
<thead>
<tr>
<th>봉지유무</th>
<th>지역</th>
<th>처리 내용</th>
<th>P (%)</th>
<th>K (%)</th>
<th>Ca (%)</th>
<th>Mg (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>무대재배</td>
<td>문경시가음(A농가)</td>
<td>엽화칼슘(0.5%) 4회 처리</td>
<td>0.16</td>
<td>1.28</td>
<td>1.45</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>칼슘제(OS-Ca) 4회 처리</td>
<td>0.21</td>
<td>1.30</td>
<td>1.25</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>관행재배(칼슘제) 4회처리</td>
<td>0.21</td>
<td>1.24</td>
<td>1.23</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>문경시가음(B농가)</td>
<td>엽화칼슘 4회처리</td>
<td>0.13</td>
<td>1.34</td>
<td>1.65</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>칼슘제(OS-Ca) 4회처리</td>
<td>0.13</td>
<td>1.23</td>
<td>1.54</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>관행살포제(칼슘제 4회처리)</td>
<td>0.14</td>
<td>1.27</td>
<td>1.46</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>유대재배</td>
<td>문경시가음(C농가)</td>
<td>엽화칼슘 4회처리</td>
<td>0.12</td>
<td>1.50</td>
<td>1.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>칼슘제(OS-Ca) 4회처리</td>
<td>0.16</td>
<td>1.56</td>
<td>1.45</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>관행살포제(칼슘제 4회처리)</td>
<td>0.13</td>
<td>1.17</td>
<td>1.25</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>문경시가음(D농가)</td>
<td>엽화칼슘 4회처리</td>
<td>0.13</td>
<td>1.37</td>
<td>1.30</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>칼슘제(OS-Ca) 4회처리</td>
<td>0.14</td>
<td>1.37</td>
<td>1.30</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>관행살포제(칼슘제 4회처리)</td>
<td>0.14</td>
<td>1.14</td>
<td>1.26</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>기준치('후지'기준)</td>
<td>0.12~0.21</td>
<td>1.18~1.64</td>
<td>0.85~1.31</td>
<td>0.23~0.34</td>
</tr>
</tbody>
</table>
나. 처리별 고두증상 발생율

처리별 고두증상 발생빈도는 유대재배와 무대재배 농가로 나누어 분석하였다. 유대재배의 경우 고두증상은 관행+일반봉지에서 24.5%로 가장 발생이 많았으며, 염화칼슘+일반봉지, OS-Ca 처리 칼슘봉지에서 7.5, 6.5%로 현저하게 낮게 발생하였다.

염화칼슘+칼슘봉지에서 10.5%, OS-Ca처리+일반봉지가 14.4% 나타났으며, 관행+칼슘봉지가 19.2%로 처리구중 가장 높게 나타났다.

결과적으로 본 연구에서 칼슘제 엽면시비는 고두증상을 감소시키는 효과가 높으며, 일부 칼슘봉지의 효과가 인정되나 처리별 뚜렷한 효과는 나타나지 않았다.

무대재배의 경우 고두증상 발생빈도는 무처리 15.5%에 비해 처리구 모두 현저한 감소를 보였으며, 관행처리구에서도 고두발생 비율이 낮아 봉지를 씌우지 않고 재배할 경우 칼슘제제의 엽면시비는 고두증상 발생 감소를 현저하게 낮출 수 있음을 알 수 있었다.

2013년도 처리별 고두발생 비율을 조사한 결과 모두 전년 2012년보다 현저하게 고두증상 발생빈도가 낮아졌으며, 이는 모든 농가에 비료 및 퇴비 시비를 중단시킨 영향도 있을 수 있으며, 또 기상관련 영향으로도 볼 수 있을 것이다.

표 5. 고두증상 발생 정도(2012)

<table>
<thead>
<tr>
<th>봉지유무</th>
<th>지역</th>
<th>처리 내용</th>
<th>고두발생율(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>정</td>
</tr>
<tr>
<td>유대재배</td>
<td>문경시 가은읍 (A농가)</td>
<td>염화칼슘(0.5%) 4회처리 + 일반봉지</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>문경시 가은읍 (A농가)</td>
<td>염화칼슘(0.5%) 4회처리 + 칼슘봉지</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>문경시 가은읍 (A농가)</td>
<td>관행 + 염화칼슘(0.5%) 4회처리 + 일반봉지</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td>문경시 가은읍 (A농가)</td>
<td>관행 + 염화칼슘(0.5%) 4회처리 + 칼슘봉지</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>문경시 가은읍 (A농가)</td>
<td>관행 + 염화칼슘(0.5%) 4회처리 + 일반봉지</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>문경시 가은읍 (A농가)</td>
<td>관행 + 염화칼슘(0.5%) 4회처리 + 칼슘봉지</td>
<td>11.4</td>
</tr>
<tr>
<td></td>
<td>무대재배</td>
<td>염화칼슘 4회처리</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>무대재배</td>
<td>관행 + 염화칼슘(0.5%) 4회처리</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>무대재배</td>
<td>관행 + 관행 + 염화칼슘(0.5%) 4회처리</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>문경시 가은읍 (B농가)</td>
<td>염화칼슘 4회처리</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>문경시 가은읍 (B농가)</td>
<td>관행 + 염화칼슘(0.5%) 4회처리</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>문경시 가은읍 (B농가)</td>
<td>관행 + 관행 + 염화칼슘(0.5%) 4회처리</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>문경시 가은읍 (B농가)</td>
<td>관행 + 관행 + 관행 + 염화칼슘(0.5%) 4회처리</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>무 처리</td>
<td>염화칼슘 4회처리</td>
<td>2.8</td>
</tr>
</tbody>
</table>

표 6. 고두증상 발생 정도(2013)
<table>
<thead>
<tr>
<th>봄지유무</th>
<th>지역</th>
<th>처리 내용</th>
<th>고두발생율(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>심 중 약 합계</td>
</tr>
<tr>
<td>유대재배</td>
<td>문경시 가은읍 (A농가)</td>
<td>염화칼슘(0.5%) 4회처리 + 일반봉지</td>
<td>0.0 0.0 0.0 0.0a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>염화칼슘(0.5%) 4회처리 + 칼슘봉지</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>칼슘제(OS-Ca, 500배액, 조개갈절 주중) 4회처리 + 일반봉지</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>칼슘제(OS-Ca, 조개갈절 주중) 4회처리 + 칼슘봉지</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>관행재배(갈슘제, 1,000배액) 4회처리 + 일반봉지</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>관행재배(갈슘제, 1,000배액) 4회처리 + 일반봉지</td>
</tr>
<tr>
<td></td>
<td>문경시 가은읍 (B농가)</td>
<td>염화칼슘 4회처리</td>
<td>0.0 0.0 0.3 0.3a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>칼슘제(OS-Ca) 4회처리</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>관행살포제(갈슘제, 4회처리)</td>
</tr>
<tr>
<td></td>
<td>문경시 문경읍 (C농가)</td>
<td>염화칼슘 4회처리</td>
<td>0.0 0.0 0.4 0.4a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>칼슘제(OS-Ca) 4회처리</td>
</tr>
<tr>
<td></td>
<td>무주군 적성면 (D농가)</td>
<td>염화칼슘 4회처리</td>
<td>0.0 0.0 0.0 0.0a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>칼슘제(OS-Ca) 4회처리</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>관행살포제(갈슘제, 4회처리)</td>
</tr>
</tbody>
</table>

* 조사일 : 2013. 10. 7

‘감홍’ 품종의 칼슘이동 및 흡수 특성은 생육초기 토양관주는 6월 중순까지 수액 및 과피내 Ca 함량을 높이는 영향이 있었으나, 8월 중순에 들어서 큰 차이를 보이지 않았다고 하였으며 (박 등, 2006), ‘감홍’ 품종의 고두증상 경감을 위하여 염화칼슘, 칼슘함유 봉지를 시험한 결과 고두발생비율이 무처리 40.6∼24.8%에 비하여 염화칼슘 및 칼슘봉지 처리구에서는 13.9∼3.9%로 현저하게 낮게 나타는 결과를 보였다 (양 등, 2006).

‘감홍’ 품종은 고두증상 경감을 위해서 염화칼슘 2회 살포 후 칼슘(6%) 함유 봉지를 써온 것이 효과적이며(2006, 양 등), 무대재배시 만개후 45일째에 염화칼슘 0.3%를 7일 간격으로 연속 4회 살포하면 고두병 발생이 경감되고, 염화칼슘함량이 증가하며, 과실의 품질도 양호하였다(2012, 강 등)는 결과가 보도되었다.

따라서 사과 ‘감홍’ 품종에서 염화칼슘 및 칼슘제의 엽면시비는 고두증상을 상당부분 경감시키는 것을 알 수 있었으며, 유대재배 보다는 무대재배에서 더 효과적인 결과를 보였었다.

다. 처리별 과실특성

2012년 처리별 농가의 과실 무게는 289.4∼451.3g이었으나, 대체로 350g이 넘는 대과가 있었으나, 2013년에는 281.1∼360.3g으로 평균 300g정도로 전년에 비해 다소 적었다.

2012년의 과실은 당도가 해발이 높아 상대적으로 일찍 수확된 문경시 문경읍의 D농가를 제외하면, 16∼18°Bx로 다른 품종 13∼14°Bx보다 높은 것을 알 수 있었으나, 2013년도에는 당도가 유대재배시 14.2∼16°Bx 다소 향상되었으며, 무대재배의 경우 대부분 16°Bx로 조사되었다. 따라서 과실의 당도는 재배기술 및 기상조건에 영향을 받으며, 특히 유대재배보다 무대재배시 당도가 1∼2°Bx 정도 높게 나타 과실의 과실을 생성하기 위해서는 무대재배로 당도를 높이는 것
이 중요하다 하겠다.

표 7 과실특성(2012)

<table>
<thead>
<tr>
<th>봉지유무</th>
<th>지역</th>
<th>처리 내용</th>
<th>무게 (g)</th>
<th>과실 크기 (㎜)</th>
<th>당도 (°Bx)</th>
<th>산도 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>유대재배</td>
<td>문경시 가은읍 (A농가)</td>
<td>염화칼슘 (0.5%) 4회처리+일반봉지</td>
<td>451.3</td>
<td>92.4</td>
<td>99.3</td>
<td>16.9ab</td>
</tr>
<tr>
<td></td>
<td></td>
<td>염화칼슘 (0.5%) 4회처리+칼슘봉지</td>
<td>360.5</td>
<td>87.4</td>
<td>88.3</td>
<td>15.5c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>칼슘제(OS-Ca) 4회처리+일반봉지</td>
<td>370.8</td>
<td>89.0</td>
<td>92.6</td>
<td>16.5bc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>칼슘제(OS-Ca) 4회처리+칼슘봉지</td>
<td>355.5</td>
<td>87.0</td>
<td>89.6</td>
<td>15.5c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>관행재배(칼슘제) 4회처리+일반봉지</td>
<td>388.4</td>
<td>88.3</td>
<td>95.9</td>
<td>15.5c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>관행재배(칼슘제) 4회처리+칼슘봉지</td>
<td>384.8</td>
<td>89.1</td>
<td>93.7</td>
<td>17.8a</td>
</tr>
<tr>
<td>무대재배</td>
<td>문경시 가은읍 (B농가)</td>
<td>염화칼슘 4회처리</td>
<td>373.6</td>
<td>88.1</td>
<td>92.0</td>
<td>17.4ab</td>
</tr>
<tr>
<td></td>
<td></td>
<td>칼슘제(OS-Ca) 4회처리</td>
<td>323.7</td>
<td>81.2</td>
<td>88.4</td>
<td>16.6ba</td>
</tr>
<tr>
<td></td>
<td></td>
<td>관행살포제(칼슘제 4회처리)</td>
<td>289.4</td>
<td>78.6</td>
<td>84.7</td>
<td>18.0a</td>
</tr>
<tr>
<td></td>
<td>문경시 문경읍 (C농가)</td>
<td>염화칼슘 4회처리</td>
<td>301.7</td>
<td>82.9</td>
<td>85.9</td>
<td>17.0abc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>칼슘제(OS-Ca) 4회처리</td>
<td>358.1</td>
<td>88.6</td>
<td>91.0</td>
<td>18.0a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>관행살포제(칼슘제 4회처리)</td>
<td>291.4</td>
<td>80.7</td>
<td>84.3</td>
<td>15.9cd</td>
</tr>
<tr>
<td></td>
<td>문경시 문경읍 (D농가)</td>
<td>무처리</td>
<td>336.9</td>
<td>86.9</td>
<td>90.8</td>
<td>14.8d</td>
</tr>
</tbody>
</table>

표 8 과실특성(2013)

<table>
<thead>
<tr>
<th>봉지유무</th>
<th>지역</th>
<th>처리 내용</th>
<th>무게 (g)</th>
<th>과실 크기 (㎜)</th>
<th>당도 (°Bx)</th>
<th>산도 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>유대재배</td>
<td>문경시 가은읍 (A농가)</td>
<td>염화칼슘 (0.5%) 4회처리+일반봉지</td>
<td>299.9</td>
<td>79.9</td>
<td>85.6</td>
<td>14.8cd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>염화칼슘 (0.5%) 4회처리+칼슘봉지</td>
<td>281.1</td>
<td>79.2</td>
<td>83.6</td>
<td>14.2d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>칼슘제(OS-Ca) 4회처리+일반봉지</td>
<td>304.9</td>
<td>81.7</td>
<td>85.5</td>
<td>16.4a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>칼슘제(OS-Ca) 4회처리+칼슘봉지</td>
<td>301.4</td>
<td>81.2</td>
<td>85.8</td>
<td>15.1ab</td>
</tr>
<tr>
<td></td>
<td></td>
<td>관행재배(칼슘제) 4회처리+일반봉지</td>
<td>309.2</td>
<td>80.5</td>
<td>87.4</td>
<td>15.7ab</td>
</tr>
<tr>
<td></td>
<td></td>
<td>관행재배(칼슘제) 4회처리+칼슘봉지</td>
<td>312.4</td>
<td>81.0</td>
<td>86.2</td>
<td>16.3a</td>
</tr>
<tr>
<td>무대재배</td>
<td>문경시 가은읍 (B농가)</td>
<td>염화칼슘 4회처리</td>
<td>326.7</td>
<td>81.2</td>
<td>86.4</td>
<td>16.8a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>칼슘제(OS-Ca) 4회처리</td>
<td>360.3</td>
<td>85.2</td>
<td>90.0</td>
<td>16.5a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>관행살포제(칼슘제 4회처리)</td>
<td>310.2</td>
<td>80.7</td>
<td>86.3</td>
<td>16.3a</td>
</tr>
<tr>
<td></td>
<td>문경시 적성면 (C농가)</td>
<td>염화칼슘 4회처리</td>
<td>303.6</td>
<td>80.9</td>
<td>85.8</td>
<td>16.5a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>칼슘제(OS-Ca) 4회처리</td>
<td>313.7</td>
<td>83.1</td>
<td>86.4</td>
<td>16.2a</td>
</tr>
<tr>
<td></td>
<td>문경시 적성면 (D농가)</td>
<td>관행살포제(칼슘제 4회처리)</td>
<td>307.3</td>
<td>82.9</td>
<td>83.9</td>
<td>15.3a</td>
</tr>
</tbody>
</table>
A농가 B농가 C농가 D농가

생육 및 과실 특성 조사 착과 모습 수확 과실

과실 특성 조사

그림 2. 처리 농가 및 과실특성 조사

라. 과실내 칼슘 변화

그림 3. 만개 후 시기별 과실 무게 및 과실내 칼슘함량 변화
그림 4. 칼슘 엽면시비시 과실내 칼슘 함량 변화
만개 후 시기별 과실 무게는 만개 20일 후부터 무게가면서 만개 160~180일경에 완만해지는 S자를 그으면서 성장했다. 한편 과실내 칼슘함량은 만개후 14일 3,943.5ppm에서 만개 후 25일에는 1,167.8ppm으로 급속히 떨어졌다. 그리고 만개 후 36일에는 690.0ppm까지 떨어졌다가 완만한 곡선을 그리면서 점차 떨어져 만개 후 158일에는 131.4ppm까지 떨어졌다. 엽면시비 후 과실내 칼슘 변화를 분석한 결과 염화칼슘과 OS-Ca의 경우 6월 14일 경우 과육과 과피에서 OS-Ca처리구가 처음에는 높았다가 6월 19일경에는 염화칼슘이 다시 높아지는 경향을 보였으나, 점차 시간이 갈수록 잔여.remaining시간을 보였으나. 그러나 7월 9일 처리의 경우 과육에서는 처음부터 염화칼슘처리구가 높은 함량을 보였으며, 과피에서는 처음에는 비슷하게 했지만 시간이 지남수록 염화칼슘 처리구가 높아지는 경향을 보였다. 따라서 고두증상 경감을 위한 엽면시비의 경우 가장 효과적인 방법이 개화 후 20~40일 까지가 적절한 시기일 것으로 추정되며, 무대재배의 경우는 이시기에 맞추어 엽면시비를 하는 것이 효
과적일 것으로 추정되나, 유대재배시 이시기는 봉지를 씌우는 시기이기 때문에 되도록 봉지 씌우는 시기를 늦추고 엽면시비를 더 하는 것이 고두증상 방지에 효과적일 것으로 생각된다.

마. 사과 무대재배 노동력 및 경영비 변화

2012년 농축산 소득자료집을 참고하여 사과 ‘감홍’ 품종의 무대재배 노동력 및 경영비 변화를 분석한 결과 ‘봉지씌우기/벗기기’에서 노동력이 3.3% 절감 되었으며, 15.9%가 절감되었다.

표 9. 사과 무대재배 노동력 절감 (2012농축산 소득자료집 참고)

<table>
<thead>
<tr>
<th>작업단계</th>
<th>봉지재배</th>
<th>무대재배</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>거름주기(밑거름, 옷거름)</td>
<td>3.7</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>가지고르기, 다듬기</td>
<td>18.0</td>
<td>18.0</td>
<td></td>
</tr>
<tr>
<td>경운, 정지(로터리)</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>여름 가지 다듬기</td>
<td>8.2</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>가지유인</td>
<td>5.6</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>인공수분</td>
<td>1.4</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>열매송기</td>
<td>28.3</td>
<td>28.3</td>
<td></td>
</tr>
<tr>
<td>봉지씌우기/벗기기</td>
<td>4.5</td>
<td></td>
<td>‘감홍’무대재배로 노동력 3.3% 절감</td>
</tr>
<tr>
<td>병충해 방제</td>
<td>6.0</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>감배기</td>
<td>2.9</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>반사필름, 잎따기</td>
<td>10.5</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>수확</td>
<td>28.2</td>
<td>28.2</td>
<td></td>
</tr>
<tr>
<td>운반 및 저장</td>
<td>4.2</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>선별 및 포장</td>
<td>11.3</td>
<td>11.3</td>
<td></td>
</tr>
<tr>
<td>기타</td>
<td>2.1</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>합계</td>
<td>135.0</td>
<td>130.5</td>
<td>△3.3% 절감</td>
</tr>
</tbody>
</table>

표 10. 사과 무대재배 경영비 절감 (2012 농축산 소득자료집 참고)
<table>
<thead>
<tr>
<th>구분</th>
<th>수량</th>
<th>단가(원)</th>
<th>경영비용(원)</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>일반농가</td>
<td>무대재배</td>
<td></td>
</tr>
<tr>
<td>무기질비료비</td>
<td>81,394</td>
<td>-</td>
<td></td>
<td>노동력</td>
</tr>
<tr>
<td>유기질비료비</td>
<td>1,349.9kg</td>
<td>125,375</td>
<td>125,375</td>
<td>4.5시간 절감</td>
</tr>
<tr>
<td>농약비</td>
<td>286,127</td>
<td>286,127</td>
<td></td>
<td>절감 노동력</td>
</tr>
<tr>
<td>광열동력비</td>
<td>85,958</td>
<td>85,958</td>
<td></td>
<td>비용(여자기준) 4.5×7,140 = 32,130원</td>
</tr>
<tr>
<td>수리(소형비료비)</td>
<td>6,658</td>
<td>6,658</td>
<td></td>
<td></td>
</tr>
<tr>
<td>제재료비</td>
<td>331,200</td>
<td>151,200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>소농구비</td>
<td>5,554</td>
<td>5,554</td>
<td></td>
<td></td>
</tr>
<tr>
<td>대농구상각비</td>
<td>257,574</td>
<td>257,574</td>
<td></td>
<td>무기질비료비 (81,394원 절감)</td>
</tr>
<tr>
<td>영농시설상각비</td>
<td>110,851</td>
<td>110,851</td>
<td></td>
<td></td>
</tr>
<tr>
<td>수선비</td>
<td>40,153</td>
<td>40,153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>조성비</td>
<td>92,992</td>
<td>92,992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>기타요금</td>
<td>667</td>
<td>667</td>
<td></td>
<td>봉지비용: 6,000개x30(원) = 180,000원</td>
</tr>
<tr>
<td>계</td>
<td>1,424,503</td>
<td>1,163,109</td>
<td></td>
<td>소계: 293,524원</td>
</tr>
<tr>
<td>임차료(농기계.시설)</td>
<td>48.5시간</td>
<td>남11,672</td>
<td>9,199</td>
<td></td>
</tr>
<tr>
<td>임차료(토지)</td>
<td>여7,140</td>
<td>39,104</td>
<td>39,104</td>
<td></td>
</tr>
<tr>
<td>위탁영농비</td>
<td>59</td>
<td>374,842</td>
<td>342,712</td>
<td></td>
</tr>
<tr>
<td>고용노력비</td>
<td>667</td>
<td>667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>계</td>
<td>1,847,707</td>
<td>1,554,183</td>
<td></td>
<td>△15.9%절감</td>
</tr>
</tbody>
</table>
* 봉지비용: 6,000개(2,103kg(수량/10a)/350g(감홍평균과중), 30원(75,000원(1box)/2500개))

3. 적요

가. 토양 및 엽 무기성분 분석

시험처리 농가의 토양분석 결과 pH는 6.3~7.3, 토양유기물은 22.1~39.7(g/kg), 유효인산은 390.0~639.4(mg/kg), K는 0.3~1.5(cmol/kg), Mg 2.0~2.4(cmol/kg)이었다. 특히 Ca는 전반적으로 기준치 5~6(cmol/kg)보다 높은 7.2~10.4(cmol/kg)이었는데 이는 고두증상 발생 경감을 위하여 그동안 많은 석회시비가 있었기 때문으로 해석된다.

2012년 엽종 무기성분 함량 분석결과 질소는 2.15~2.37%, P는 0.14~2.2%, Mg은 0.26~0.43%로 무처리와 비교하여 큰 연관성이 나타나지 않았으나, K는 1.39~2.36%이었으며, 관행 살포구와 OS-Ca 살포구가 무처리 1.31%와 엽화살포구 처리구 보다 대부분의 농가에서 높게 나타났다. Ca항량은 처리구 모두 무처리 1.07% 보다 높은 1.25~1.73% 나타나, 모든 칼슘제 엽면시비는 무처리보다 엽종 Ca항량을 높이는 효과가 인정되었다.

나. 처리별 고두증상 발생율

처리별 고두증상 발생비율은 유대재배와 무대재배 농가로 나누어 분석하였다. 유대재배의 경우 고두증상은 관행+일반봉지에서 24.5%로 가장 발생이 많았으며, 엽화살포+일반봉지, OS-Ca 처리 살포구에서 7.5, 6.5%로 현저하게 낮게 발생하였다.

염화살포+살포구에서 10.5%, OS-Ca처리+일반봉지가 14.4% 나타났으며, 관행+살포구가 19.2%로 처리구중 가장 높게 나타났다.

결과적으로 볼 때 살포구 엽면시비는 고두증상을 감소시키는 효과가 높으며, 일부 칼슘제의 효과가 인정되었으나 처리별 두드럼 효과는 나타나지 않았다.

무대재배의 경우 고두증상 발생비율은 무처리 15.5%에 비해 처리구 모두 현저한 감소를 보
였으며, 관행처리구에서도 고두발생 비율이 낮아 붉지를 쓰우지 않고 재배할 경우 칼슘재제의
업면시비는 고두증상 발생 감소를 현저하게 낮출 수 있음을 알 수 있었다.

다. 처리별 과실특성

과실의 당도는 2012년에 유대재배시 처리별 15.5~17.8°Bx, 무대재배시 해발이 높아 상대적
을 일찍 수확된 문경시 문경읍의 D농가를 제외한 16.6~18.0°Bx로 조사 되었으며, 2013년에
는 유대재배시 14.2~16°Bx 다소 떨어졌으나, 무대재배의 경우 대부분 16°Bx로 조사되었다.
따라서 ‘감홍’은 유대재배보다 무대재배시 당도가 1~2°Bx 정도 높게 나타났다.

라. 과실내 칼슘 변화

과실내 칼슘함량은 만개후 14일 3,943.5ppm에서 만개 후 25일에는 1,167.8ppm으로 급속
히 떨어졌다. 그리고 만개 후 36일에는 690.0ppm까지 떨어졌다가 완만한 곡선을 그리면서
점차 떨어져 만개 후 158일에는 131.4ppm까지 떨어졌다.
따라서 고두증상 경감을 위한 엽면시비의 경우 가장 효과적인 방법이 개화 후 20~40일 까지가
적절한 시기일 것으로 추정되었다.

마. 사과 무대재배시 노동력 및 경영비 변화

2012년 농축산 소득자료집을 참고하여 사과 ‘감홍’ 품종의 무대재배시 노동력 및 경영비 변
화를 분석한 결과 ‘붕지Obsolete/벗기기’에서 노동력이 3.3% 절감 되었으며, 15.9%가 절감되었다.

제 2절 : 수출 사과 생산현장 안전성 확고 기술 접목

1. 재료 및 방법

가. 수출사과 농약안전사용지침 설정 및 수입국 기준 대응

수출농산물은 국내 식품기준은 물론 수출대상국의 잔류기준에도 맞는 농산물을 생산해야
하기 때문에 수출대상국별로 대응하기 않으면 안된다. 특히 수출대상국마다 등록농약이 다르고
또한 같은 작물일지라도 잔류기준이 다르기 때문에 수출농산물 재배농가에서의 농약사용은 매
우 제한적인 수밖에 없다. 이러한 문제를 해결하기 위해 대만 등 주요 사과 수출대상국 7개국
에 대한 사과 농약판례허용기준(MRL)을 인터넷을 통해 조사하여 한국기준과 비교정리하였으
며 이를 토대로 국내등록농약을 중심으로 농약판례기준에 적합하도록 농약판례사용기준을
제조정하는 방법으로 수출용 사과 국가별 농약판례사용지침을 설정하였다. 또한 한국산 사과
의 최대 수입국인 대만의 잔류기준을 설정하기 위하여 대만 수출사과 안전성 위반농약을 중심
으로 Import Tolerance 설정을 대만 당국에 요청하였다.

나. 수출사과 농약사용실태 조사 및 잔류농약 모니터링

수출사과의 농약사용실태 조사 및 잔류농약 조사를 위하여 경남 거창군 거창읍, 남상면,
웅양면 등 3개 읍면 10농가를 선정하여 영농전에 농약사용기록을 배부하여 수확시기에 시료
채취와 더불어 기록장을 회수하여 농약사용 실태를 조사하였으며 각 농가에서 채취한 시료의
농약판례를 분석하였다. 사과의 품종은 중생종으로 홍로 9농가와 히로사키 1농가였다.

(1) 시료채취

조사대상 사과는 10 선풍농가의 사과원에서 각각 약 5kg씩 시료를 채취한 후 신속히
운반하여 무게를 제고 4등분한 후 1/4조각을 취하여 짝지와 셔방부위를 제거한 다음 마쇄하여 사용하였으며, 남은 시료는 -20℃의 냉동실에 보관하였다.

(2) 분석대상농약 및 시약
분석대상농약은 농약사용지침서(한국작물보호협회, 2011)와 식품의 농약 잔류허용기준(식품의약품안전管理局, 2011)을 참고하여 과일에 등록되어 주로 사용되고 잔류허용기준(maximum residue limits, MRL)이 설정되어 있는 농약과 2010년 잔류모니터링 결과를 통해 적발건수가 높은 농약을 조사하여 그 중 다성분 동시분석이 가능한 살비제 25종, 살균제 36종, 제초제 1종, 살충제 32종, 생장조절제 1종 총 83종을 대상으로 하였다(표 1).

시료의 전처리를 위한 QuEChERS products는 Q-Sep Q150, Q251 Restek사의 제품을 사용하였으며 50 mL의 폴리프로필렌 원심분리튜브(Falcon)와 원심분리기(한일, Combi-514R)가 사용되었다. Glacial acetic acid와 acetonitrile은 Merck제품을 사용하였다. 농약 표준품은 Dr. Ehrenstorfer GmbH와 Wako제품을 사용하였는데 톨루엔이나 아세토니트릴에 1000 mg/kg 용액을 제조하여 -20℃이하에서 냉동보관하면서 혼합표준용액 제조에 이용하였다. 혼합표준용액은 20 μg/mL의 농도가 되도록 각 농약을 혼합하고 아세토니트릴을 이용하여 최적화 후 회수를 실험에 사용하였다. 내부표준물질은 10 μg/mL 농도로 제조하여 시료에 첨가하였고 이를 아세토니트릴로 10배 회수하여 1 μg/mL로 만들어 matrix matched calibration을 위한 용액 제조에 이용하였다. 기기분석시의 오류를 검토하기 위해 사용된 QC 표준용액인 triphenylphosphate의 경우 1 μg/mL가 되도록 별도로 제조하였다.

표 1. 잔류농약 모니터링 대상 성분

<table>
<thead>
<tr>
<th>Classification</th>
<th>Name of Pesticide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herbicide(1)</td>
<td>Pendimethalin</td>
</tr>
<tr>
<td>Insecticide(32)</td>
<td>Acetamiprid, Bifenthrin, Carbaryl, Carbofuran, Chlorantraniliprole, Chlorfenapyr, Chlorfluazon, Chlorpyrifos, Cylthrin, Deltamethrin, Etofenprox, Fenitrothion, Fenthion, Fenvalerate, Flonicamid, Imidacloprid, Indoxacarb, Methidathion, Novaluron, Phenthoate, Phosphamidon, Pirimiphos-methyl, Prothiofos, Pyridalyl,</td>
</tr>
</tbody>
</table>
(3) 잔류분석시료의 전처리
QuEChERS 분석법은 CEN prEN15662법과 AOAC 2007.01법으로 등재되어있기 때문에 두 분석법을 비교 실험한 결과에 의거하여(Lehotay 등, 2010) AOAC 2007.01법에 근간을 두고 흡착제를 첨가하는 과정에서 C18을 더 첨가한 분석법으로 실험을 실시하였으며, 시험법은 다음과 같다. 1) 시료를 곱게 분쇄한 다음 50 mL 원심분리관에 분쇄된 시료 15 g를 첨가한 후 1% glacial acetic acid 함유 아세토니트릴 15 mL를 넣고 투경을 닫고 손으로 1분간 진탕한다. 2) 아세토니트릴에 용해되어 있는 내부표준물질 10 µg/g용액 150 µL를 첨가한 후 1% glacial acetic acid 함유 아세토니트릴 15 mL를 넣고 투경을 닫고 손으로 1분간 진탕한다. 3) 6 g의 anhydrous MgSO₄와 1.5 g의 anhydrous NaOAc가 든 50 ml 폴리프로필렌 원심분리관에 2)를 넣고 투경을 닫고 염이 뭉치지 않도록 즉시 손으로 1분간 혼들어 준다. 4) 3,000 rpm에서 5분간 원심분리한다. 5) 150 mg anhydrous MgSO₄, 50 mg PSA, 50 mg C₁₈가 든 폴리프로필렌 원심분리관에 앞의 상정액 1 mL를 피펫으로 떠서 옮기고 30초간 vortex mixer를 이용하여 진탕한다. 6) 12,000 rpm에서 5분간 원심분리한다. 7) 2 mL 유리 바이알에 상정액 500 µL를 담고 triphenylphosphate 1 µg/mL용액 50 µL, 아세토니트릴 50 µL를 넣어 GC/TOFMS로 분석한다.

Matrix matched calibration을 위해 농약이 첨가되지 않은 시료를 가지고 위 시료분석방법의 1)~6)번과 동일하게 실험하고, 2 mL 유리 바이알에 상정액 500 µL를 담고 triphenylphosphate 1 µg/mL용액 50 µL, matrix matched calibration용 혼합표준용액(1, 2, 5, 10, 20 µg/mL 농도) 50 µL을 넣어 GC/TOFMS로 분석한다.

| Pyridaphenthion, Silafluofen, Spiromesifen, Tebufenozide, Teflubenzuron, Tetraconazole, Thiamethoxam, Tralomethrin | Others (1) Forchlorfenuron |

![그림 1. 사과 중 농약잔류량 분석 흐름도](image-url)
(4) 기기분석

GC/TOFMS는 Leco사의 Pegasus 4D를 사용하였는데 GC는 Agilent사의 7890시리즈였다. GC/TOFMS 기기분석조건은 아래 표 2에 나타내었으며 각 정량이온과 머무름 시간은 표 4에 나타내었다. GC에서 분리된 각 성분들은 50-550 m/z 범위에서 모든 질량이온들을 획득(full scan mode)하였고, 질량 스펜트럼 획득 속도는 10 spectra/sec 이었다. GC/TOFMS에서 분리된 성분들의 정보를 수집 및 분석하기 위해서 LECO사의 ChromaTOF software(version 4.24)를 사용하였다. 각 성분들은 US National Institute of Standards and Technology(NIST)와 in-house pesticidesLECO 라이브러리를 사용하여 Similarity와 Reverse, Probability가 높은 값 및 스펜트럼을 확인하여 선정하였으며, 참고문헌 등을 통하여 재확인도 하였다. Similarity와 Reverse는 NIST에서 정의한 값으로 실제 시료에서 얻은 성분들의 mass fragmentation 패턴과 질량 스펜트럼 라이브러리에 제시된 mass fragmentation 패턴과 비교하였을 때 일치하는 정도를 평가할 수 있다. Similarity는 실제 샘플에 존재하는 모든 질량 스펜트럼을 라이브러리의 질량 스펜트럼과 비교하여 일치 정도를 평가하는 반면, Reverse는 실제 샘플의 질량 스펜트럼 중 라이브러리에 존재하는 질량 스펜트럼만을 비교하였을 때 일치 정도를 나타낸다(이 등, 2009).
표 2. GC/TOFMS의 분석조건

<table>
<thead>
<tr>
<th>Model</th>
<th>GC Agilent 7890/LECO TOFMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liner</td>
<td>Straight inlet liner w/Wool (RESTEK, 2 mm x 3.0 x 71 for Agilent GCs, IP Deact., w/Deact. Wool)</td>
</tr>
<tr>
<td>Inlet mode</td>
<td>Splitless</td>
</tr>
<tr>
<td>Injection vol.</td>
<td>2 µL</td>
</tr>
<tr>
<td>Column</td>
<td>Rtx-5MS w/Integra-Guard (30 m, 0.25 mm ID, 0.25 µm film thickness)</td>
</tr>
<tr>
<td>Mass Method</td>
<td>Range: 50-550 m/z</td>
</tr>
<tr>
<td>Ion Source temp.</td>
<td>1800V</td>
</tr>
<tr>
<td>Transfer line temp.</td>
<td>250°C</td>
</tr>
<tr>
<td>Oven temp. program</td>
<td>Initial temp. → 90°C (6.7 min) → (20°C/min) → 180°C (1 min) → (10°C/min) → 265°C (1 min) → (5°C/min) → 300°C (4.5 min)</td>
</tr>
<tr>
<td>Carrier Gas</td>
<td>He (flow rate: 1.75 mL/min)</td>
</tr>
</tbody>
</table>

2. 결과 및 고찰

가. 주요 수출대상국별 사과 농약잔류허용기준(MRL) 비교 분석

수출대상국별 농약안전사용지침을 설정하기 위해 주요 수출대상국별 사과 농약잔류허용기준(MRL)을 조사한 결과는 표 3과 같다. 표에서 나타낸 바와 같이 한국산 사과의 최대 수입국인 대만은 잔류기준 설정수는 최근 들어 많이 들었지만 124성분에 불과해 한국의 203성분에 비해 적었다.

표 3. 주요 수출대상국별 사과 농약잔류기준 설정 현황

<table>
<thead>
<tr>
<th>구분</th>
<th>한국</th>
<th>대만</th>
<th>러시아</th>
<th>미국</th>
<th>EU</th>
<th>일본</th>
<th>캐나다</th>
<th>호주</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRL설정수(성분)</td>
<td>203</td>
<td>124</td>
<td>117</td>
<td>129</td>
<td>450</td>
<td>340</td>
<td>96</td>
<td>126</td>
</tr>
</tbody>
</table>

나. 수출용 사과 국가별 농약안전사용지침 설정 보급

2013년 사과 수출대상국별 맞춤형 농약안전사용지침은 대만을 비롯해 7개국이 193병해충 2,675농약품목에 대한 설정하였으며 그 결과는 표 4와 같다. 대만 수출용 사과 농약안전사용지침의 경우 2011.2.1. 전수검사 조치에 대응하기 위하여 매년 영농전인 2, 3월에 안전성 교육과 함께 조기 설정 보급하였으며 한국과 대만의 사과 MRL 추가, 변경, 삭제여부에 따라 수시로 업데이트하여 보급하였다. 대만 수출용 사과 농약안전사용지침 설정 현황은 감색무늬병 등 30병해충 580농약품목으로 표 5에 나타났다.

표 4. 수출용 사과 국가별 농약안전사용지침 설정 현황

<table>
<thead>
<tr>
<th>구분</th>
<th>계</th>
<th>대만</th>
<th>러시아</th>
<th>미국</th>
<th>EU</th>
<th>일본</th>
<th>캐나다</th>
<th>호주</th>
</tr>
</thead>
<tbody>
<tr>
<td>수록 병해충(종)</td>
<td>193</td>
<td>30</td>
<td>23</td>
<td>27</td>
<td>26</td>
<td>32</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>설정 농약품목(수)</td>
<td>2,675</td>
<td>580</td>
<td>334</td>
<td>307</td>
<td>389</td>
<td>609</td>
<td>241</td>
<td>305</td>
</tr>
<tr>
<td>보급 실적</td>
<td>500여 관련기관·단체 및 수출농가 1,000부('12 ~'13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
표 5. 대만 수출용 사과 농약안전사용지침 설정 현황

<table>
<thead>
<tr>
<th>적용용해충</th>
<th>설정 농약품목수</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>갈색점무늬병</td>
<td>디페노코나졸 수화제 등 65품목</td>
<td>안전사용기준 및 농약사용량, 한대만 잔류허용기준 수록</td>
</tr>
<tr>
<td>검은병</td>
<td>뉴아리몰 유제 등 14품목</td>
<td></td>
</tr>
<tr>
<td>검은점무늬병</td>
<td>옥신코프 · 폴리옥신비 수화제 1품목</td>
<td></td>
</tr>
<tr>
<td>검무늬점무늬병</td>
<td>만코제브 수화제 등 77품목</td>
<td></td>
</tr>
<tr>
<td>부단병</td>
<td>테부코나졸 도포제 등 6품목</td>
<td></td>
</tr>
<tr>
<td>봉은병</td>
<td>마이크로퓨타닐 수화제 등 17품목</td>
<td></td>
</tr>
<tr>
<td>적병</td>
<td>아록시스트로린 수화제 1품목</td>
<td></td>
</tr>
<tr>
<td>자주날개무늬병</td>
<td>티오파네이트수화제 등 1품목</td>
<td></td>
</tr>
<tr>
<td>검은점무늬병</td>
<td>옥신코프 · 폴리옥신비 수화제 1품목</td>
<td></td>
</tr>
<tr>
<td>겹무늬썩음병</td>
<td>만코제브 수화제 등 77품목</td>
<td></td>
</tr>
<tr>
<td>탄자병</td>
<td>베노말 수화제 등 67품목</td>
<td></td>
</tr>
<tr>
<td>황가루병</td>
<td>결정석회항 합제 등 17품목</td>
<td></td>
</tr>
<tr>
<td>황날개무늬병</td>
<td>플루아지남 분제 등 2품목</td>
<td></td>
</tr>
<tr>
<td>갈색여치</td>
<td>페니트로阿里巴巴 등 2품목</td>
<td></td>
</tr>
<tr>
<td>갈지벌레</td>
<td>기계유 유제 등 2품목</td>
<td></td>
</tr>
<tr>
<td>나무종류</td>
<td>티오파네이트수화제 등 17품목</td>
<td></td>
</tr>
<tr>
<td>노린재류</td>
<td>비페니트리온 수화제 등 41품목</td>
<td></td>
</tr>
<tr>
<td>복숭아순나방</td>
<td>노발루론 액상수화제 등 23품목</td>
<td></td>
</tr>
<tr>
<td>복숭아심식나방</td>
<td>감마사이할로트린 캔슬현탁제 등 25품목</td>
<td></td>
</tr>
<tr>
<td>사과굴나방</td>
<td>디플루벤주론 액상수화제 등 43품목</td>
<td></td>
</tr>
<tr>
<td>사과명충</td>
<td>플로나카미드 입상수화제 등 2품목</td>
<td></td>
</tr>
<tr>
<td>사과유리나방</td>
<td>아바멕틴 유제 1품목</td>
<td></td>
</tr>
<tr>
<td>응애류</td>
<td>밀베멕틴 수화제 등 38품목</td>
<td></td>
</tr>
<tr>
<td>잎말이명나방</td>
<td>델타메트린 유제 등 41품목</td>
<td></td>
</tr>
<tr>
<td>잎말이병나방</td>
<td>이네스벤발레이트 · 페니트리테론 수화제 1품목</td>
<td></td>
</tr>
<tr>
<td>응애류</td>
<td>밀베멕틴 수화제 등 38품목</td>
<td></td>
</tr>
<tr>
<td>잎말이명나방</td>
<td>이네스벤발레이트 · 페니트리테론 수화제 1품목</td>
<td></td>
</tr>
<tr>
<td>진딧물</td>
<td>티아클로프리드 액상수화제 등 47품목</td>
<td></td>
</tr>
<tr>
<td>발근촉진</td>
<td>아바매스터 복합수액 1품목</td>
<td></td>
</tr>
<tr>
<td>신초색장애제</td>
<td>프로필락스와신갈슘 액상수화제 1품목</td>
<td></td>
</tr>
<tr>
<td>적과효과</td>
<td>티아클로프리드 액상수화제 1품목</td>
<td></td>
</tr>
<tr>
<td>후기낙과방지</td>
<td>아바글라신 수화제 1품목</td>
<td></td>
</tr>
<tr>
<td>계</td>
<td>30병해충</td>
<td>580품목</td>
</tr>
</tbody>
</table>
다. 수출사과(중생종) 농약사용 실태 조사 결과
수출사과 재배농가의 10농가의 농약사용실태와 농약관리량 분석 결과(표 6), 중생종인 홍로와 히로사끼에 대한 년 평균 농약소포횟수는 12.4~12.9회 이었으며 회당 혼용농약수는 27종으로 대부분 농가에서 살포인력 절감 등의 이유로 혼용살포를 하고 있음을 확인하였다. 또한 조사농가에서 사용한 농약생분수는 조사년도에 따라 88~89종으로 농가별로 선호도에 따라 거의 같은 농약을 사용하고 있음을 알 수 있었으며 조사기간 중 농가에서 사용한 사과 미등록농약은 4-CPA, Cymoxanil, Phosphamidon, Pymetrozine 4종으로 미등록농약의 사용은 수출사과 안전성 확보에 큰 문제점으로 지적되었다. 살포횟수로써 농약에 대한 농가선호도를 조사한 결과는 표 7과 같으며 대만 미등록성분인 Etofenprox, Fluquinconazole를 많이 사용하고 있어 문제가 되었다.

![표 6. 수출사과 농약사용실태 조사 결과](image)

<table>
<thead>
<tr>
<th>년도</th>
<th>조사농가수</th>
<th>품종</th>
<th>농약소포횟수 (회/년)</th>
<th>회당혼용농약수</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>10</td>
<td>홍로, 히로사끼</td>
<td>12.4</td>
<td>2.7</td>
<td>영양제 포함</td>
</tr>
<tr>
<td>2013</td>
<td>10</td>
<td>"</td>
<td>12.9</td>
<td>2.7</td>
<td>"</td>
</tr>
</tbody>
</table>

![표 7. 농가 주요 선호농약 및 살포횟수(조사농가 10농가 기준)](image)

<table>
<thead>
<tr>
<th>순위</th>
<th>농약명</th>
<th>총 살포횟수</th>
<th>순위</th>
<th>농약명</th>
<th>총 살포횟수</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mancozeb</td>
<td>23</td>
<td>9</td>
<td>Pyraclostrobin</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>Etofenprox</td>
<td>23</td>
<td>10</td>
<td>Acibenzolar-S-methyl</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>Dithianon</td>
<td>19</td>
<td>11</td>
<td>Fluquinconazole</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>Acetamiprid</td>
<td>18</td>
<td>11</td>
<td>Kresoxim-methyl</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>Chlorantraniliprole</td>
<td>18</td>
<td>11</td>
<td>Bifenthrin</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>Difenoconazole</td>
<td>17</td>
<td>14</td>
<td>Methoxyfenozide</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>Fluazinam</td>
<td>16</td>
<td>14</td>
<td>Captan</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>Tebuconazole</td>
<td>16</td>
<td>16</td>
<td>Flonicamid</td>
<td>10</td>
</tr>
</tbody>
</table>
라. 수출사과(중생종) 농약잔류량 모니터링 결과

(1) 전류분석법의 농약성분별 회수율

83종의 각 표준품 농도를 10, 20, 50, 100, 200 ug/g의 농도로 제조하여 3번씩 주입한 다음 회수율, RSD, 정량환계를 구하였다. 회수율을 구하기 위해 내부표준물질 2종(205, 166 m/z와 pirimicarb D6)을 참가하였으나 회수율 산출에 사용된 내부표준물질은 pirimicarb D6로 atrazine D5보다 재현성이 좋고, 피크면적을 크며 분석대상 83종 농약의 머무름 시간과 겹치지 않는 머무름 시간을 보였기 때문이다(표 3). 각 농약성분의 피크면적을 내부표준물질인 pirimicarb D6의 피크면적으로 나눈 피크면적을 이용하여 회수율을 산출하였으며 QC물질인 triphenylphosphate의 경우 정량에 이용하지 않았다. 회수율은 2농도 수준(50, 100 ng/g) 모두에서 83종의 농약 중 98%이상이 80-120% 범위에서 나타나 양호한 결과를 보였으며, 4성분(4.8%)을 제외한 모든 성분에서 RSD값이 10%이하로 나타났다(표 4). 분석법 LOQ(Limit of Quantitation)은 EU 가이드라인(SANCO/10684/2009)dp 따라서 70-120%의 회수율을 가지면서 RSD가 20%이하의 기준을 만족하는 가장 낮은 첨가농도를 산정하였는데 78성분(94%)의 농약이 2-20ng/g의 분석법 LOQ를 보였다. GC/TOFMS의 경우 빠른 반복율로 일어나는 피크면적이 없이 full scan을 획득하여 library를 대조함으로써 분석 결과의 신뢰성을 높일 수 있다. 따라서 QuEChERS법과 GC/TOFMS를 이용한 본 분석방법을 이용하여 농산물의 잔류농약 분석에 활용이 가능하다라 판단되었다.

표 8. 표준품과 내부표준물질의 피크 면적 및 머무름 시간

<table>
<thead>
<tr>
<th>Name of compound</th>
<th>m/z for quantification</th>
<th>R.T. (min:sec)</th>
<th>Area (n=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS Atrazine D5</td>
<td>205</td>
<td>15:09</td>
<td>330,868</td>
</tr>
<tr>
<td>Primicarb D6</td>
<td>166</td>
<td>16:10</td>
<td>843,934</td>
</tr>
<tr>
<td>QC Triphenylphosphate</td>
<td>326</td>
<td>21:12</td>
<td>2,511,697</td>
</tr>
</tbody>
</table>

표 9. GC/TOFMS 분석에 의한 대상농약의 회수율 및 정밀도

<table>
<thead>
<tr>
<th>No.</th>
<th>Pesticide</th>
<th>Quant Mass (m/z)</th>
<th>R.T. 1) (min:sec)</th>
<th>R²</th>
<th>LOQ 2) (ng/g)</th>
<th>Recovery (RSD), %, mean, n=3</th>
<th>50 ng/g</th>
<th>100 ng/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acetamiprid</td>
<td>56</td>
<td>21:51.8</td>
<td>1.000</td>
<td>100</td>
<td>ND</td>
<td>92 (5)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Acibenzolar-S-methyl</td>
<td>182</td>
<td>16:53.3</td>
<td>0.998</td>
<td>10</td>
<td>97 (1)</td>
<td>99 (1)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Azoxyystrobin</td>
<td>344</td>
<td>28:30.1</td>
<td>0.995</td>
<td>20</td>
<td>93 (5)</td>
<td>86 (4)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Bifenazate</td>
<td>300</td>
<td>21:54.8</td>
<td>0.998</td>
<td>20</td>
<td>90 (5)</td>
<td>83 (3)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Bifenthrin</td>
<td>181</td>
<td>21:48.5</td>
<td>1.000</td>
<td>2</td>
<td>95 (3)</td>
<td>94 (2)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Bitertanol</td>
<td>170</td>
<td>24:00.6</td>
<td>0.996</td>
<td>2</td>
<td>90 (4)</td>
<td>87 (2)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Boscalid</td>
<td>140</td>
<td>25:35.6</td>
<td>0.996</td>
<td>2</td>
<td>95 (3)</td>
<td>94 (1)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Captan</td>
<td>117</td>
<td>18:28.8</td>
<td>0.995</td>
<td>10</td>
<td>103 (4)</td>
<td>107 (3)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Carbaryl</td>
<td>144</td>
<td>16:48.6</td>
<td>0.999</td>
<td>5</td>
<td>105 (5)</td>
<td>118 (13)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Carbofuran</td>
<td>164</td>
<td>15:08.9</td>
<td>0.999</td>
<td>5</td>
<td>108 (5)</td>
<td>119 (14)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Chlorantraniliprole</td>
<td>278</td>
<td>22:13.0</td>
<td>0.996</td>
<td>20</td>
<td>90 (5)</td>
<td>84 (2)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Chlorfenapyr</td>
<td>247</td>
<td>19:50.0</td>
<td>0.999</td>
<td>2</td>
<td>100 (3)</td>
<td>97 (3)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Chlorfluazuron</td>
<td>321</td>
<td>19:03.7</td>
<td>0.989</td>
<td>10</td>
<td>88 (5)</td>
<td>93 (9)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Chlorothalonil</td>
<td>197</td>
<td>16:03.3</td>
<td>0.995</td>
<td>2</td>
<td>111 (2)</td>
<td>114 (4)</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Chemical Name</td>
<td>Retention Time</td>
<td>RSD</td>
<td>Rep.</td>
<td>CV</td>
<td>Exp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------------------------</td>
<td>----------------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Chlorpyrifos</td>
<td>17:35.7</td>
<td>0.999</td>
<td>2</td>
<td>99</td>
<td>102 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Clofentezine</td>
<td>09:08.3</td>
<td>1.000</td>
<td>5</td>
<td>109 (4)</td>
<td>106 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Cyfluthrin</td>
<td>24:55.1</td>
<td>0.999</td>
<td>10</td>
<td>103 (4)</td>
<td>100 (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cyfluthrin:2</td>
<td>25:02.4</td>
<td>0.998</td>
<td>10</td>
<td>99</td>
<td>106 (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cyfluthrin:3</td>
<td>25:10.2</td>
<td>1.000</td>
<td>10</td>
<td>99</td>
<td>98 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cyfluthrin:4</td>
<td>25:13.2</td>
<td>0.998</td>
<td>10</td>
<td>98</td>
<td>96 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Cypermethrin</td>
<td>25:31.7</td>
<td>0.994</td>
<td>20</td>
<td>106 (4)</td>
<td>102 (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cypermethrin:2</td>
<td>25:55.1</td>
<td>0.998</td>
<td>20</td>
<td>101 (5)</td>
<td>95 (8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cypermethrin:3</td>
<td>25:39.6</td>
<td>0.996</td>
<td>20</td>
<td>96</td>
<td>103 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cypermethrin:4</td>
<td>25:42.3</td>
<td>0.999</td>
<td>20</td>
<td>101 (5)</td>
<td>95 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Cyproconazole</td>
<td>25:31.7</td>
<td>0.994</td>
<td>20</td>
<td>106 (4)</td>
<td>102 (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cyproconazole:2</td>
<td>25:55.1</td>
<td>0.998</td>
<td>20</td>
<td>101 (5)</td>
<td>95 (8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cyproconazole:3</td>
<td>25:39.6</td>
<td>0.996</td>
<td>20</td>
<td>96</td>
<td>103 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cyproconazole:4</td>
<td>25:42.3</td>
<td>0.999</td>
<td>20</td>
<td>101 (5)</td>
<td>95 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Cyprodinil</td>
<td>18:06.1</td>
<td>0.998</td>
<td>2</td>
<td>96</td>
<td>101 (5)</td>
<td>94 (1)</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Deltamethrin</td>
<td>28:01.5</td>
<td>0.997</td>
<td>10</td>
<td>110 (1)</td>
<td>112 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Diazinon</td>
<td>15:40.4</td>
<td>0.999</td>
<td>2</td>
<td>99</td>
<td>103 (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Dichlorvos</td>
<td>10:09.1</td>
<td>0.992</td>
<td>2</td>
<td>115 (1)</td>
<td>126 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Difenoconazole</td>
<td>27:31.8</td>
<td>0.997</td>
<td>20</td>
<td>104 (3)</td>
<td>87 (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Difenoconazole:2</td>
<td>27:38.3</td>
<td>0.993</td>
<td>20</td>
<td>102 (2)</td>
<td>87 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Diniconazole</td>
<td>20:07.8</td>
<td>1.000</td>
<td>5</td>
<td>96</td>
<td>93 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>EPN</td>
<td>21:55.0</td>
<td>0.993</td>
<td>5</td>
<td>95</td>
<td>93 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Ethabuxim</td>
<td>24:20.4</td>
<td>0.941</td>
<td>20</td>
<td>99</td>
<td>91 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Etofenprox</td>
<td>25:49.9</td>
<td>1.000</td>
<td>2</td>
<td>93</td>
<td>91 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Etoxazole</td>
<td>22:02.2</td>
<td>0.999</td>
<td>5</td>
<td>95</td>
<td>91 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Fenarimol</td>
<td>23:25.3</td>
<td>0.998</td>
<td>5</td>
<td>94</td>
<td>91 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Fenazaquin</td>
<td>22:12.7</td>
<td>0.999</td>
<td>2</td>
<td>86</td>
<td>93 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Fenbuconazole</td>
<td>25:00.6</td>
<td>0.993</td>
<td>5</td>
<td>92</td>
<td>87 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Fenitrothion</td>
<td>17:12.3</td>
<td>0.998</td>
<td>2</td>
<td>101 (0)</td>
<td>102 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Fenpropaphrin</td>
<td>21:59.5</td>
<td>1.000</td>
<td>5</td>
<td>97</td>
<td>95 (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Fenpyroximate</td>
<td>15:10.2</td>
<td>1.000</td>
<td>5</td>
<td>99</td>
<td>98 (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Fenthion</td>
<td>17:34.0</td>
<td>0.998</td>
<td>2</td>
<td>101 (1)</td>
<td>101 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Fenvalerate</td>
<td>26:50.1</td>
<td>0.998</td>
<td>20</td>
<td>105 (1)</td>
<td>104 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Fenvalerate:2</td>
<td>27:09.3</td>
<td>0.997</td>
<td>20</td>
<td>92</td>
<td>91 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Fionicamid</td>
<td>13:43.3</td>
<td>1.000</td>
<td>5</td>
<td>94</td>
<td>91 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Flucrypyrim</td>
<td>20:21.3</td>
<td>0.999</td>
<td>2</td>
<td>94</td>
<td>93 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Fludioxonil</td>
<td>19:20.5</td>
<td>1.000</td>
<td>2</td>
<td>97</td>
<td>98 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Flufenoxuron</td>
<td>16:03.3</td>
<td>0.998</td>
<td>2</td>
<td>100 (3)</td>
<td>96 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Fluquinconazole</td>
<td>24:29.5</td>
<td>0.997</td>
<td>5</td>
<td>95</td>
<td>91 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Flusilazole</td>
<td>19:33.4</td>
<td>0.995</td>
<td>2</td>
<td>94</td>
<td>91 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Folpet</td>
<td>18:36.4</td>
<td>0.998</td>
<td>10</td>
<td>100 (5)</td>
<td>111 (14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Forchlorfenuron</td>
<td>11:43.2</td>
<td>0.999</td>
<td>10</td>
<td>89</td>
<td>96 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Hexaconazole</td>
<td>19:12.6</td>
<td>0.999</td>
<td>5</td>
<td>96</td>
<td>95 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Imibenconazole</td>
<td>29:28.9</td>
<td>0.994</td>
<td>50</td>
<td>97</td>
<td>87 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Indoxacarb</td>
<td>27:53.6</td>
<td>0.999</td>
<td>50</td>
<td>99</td>
<td>83 (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Iprodione</td>
<td>21:35.9</td>
<td>0.999</td>
<td>20</td>
<td>104 (4)</td>
<td>93 (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Kresoxim-methyl</td>
<td>19:35.4</td>
<td>0.997</td>
<td>2</td>
<td>98</td>
<td>98 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Mepanipyrim</td>
<td>18:56.3</td>
<td>0.998</td>
<td>2</td>
<td>96</td>
<td>95 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Metconazole</td>
<td>22:16.5</td>
<td>0.994</td>
<td>10</td>
<td>91</td>
<td>86 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Methidathion</td>
<td>18:45.5</td>
<td>0.997</td>
<td>5</td>
<td>100 (2)</td>
<td>103 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Micyclotanil</td>
<td>19:31.0</td>
<td>0.997</td>
<td>2</td>
<td>95</td>
<td>94 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Novaluron</td>
<td>11:33.9</td>
<td>0.996</td>
<td>2</td>
<td>108 (4)</td>
<td>104 (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Phenthioate</td>
<td>18:26.8</td>
<td>0.997</td>
<td>2</td>
<td>100 (3)</td>
<td>98 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Phosphamidon</td>
<td>16:28.0</td>
<td>0.998</td>
<td>2</td>
<td>97</td>
<td>104 (9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Pirimiphos methyl</td>
<td>17:11.0</td>
<td>0.999</td>
<td>2</td>
<td>99</td>
<td>100 (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Prochloraz</td>
<td>24:33.3</td>
<td>0.987</td>
<td>20</td>
<td>93</td>
<td>84 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>化学成分</td>
<td>保留時間</td>
<td>定量限界</td>
<td>検出数</td>
<td>保留時間</td>
<td>定量限界</td>
<td>検出数</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Prothiofos</td>
<td>113</td>
<td>19:15.6</td>
<td>0.999</td>
<td>5</td>
<td>97</td>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Pyraclostrobin</td>
<td>132</td>
<td>26:57.3</td>
<td>0.991</td>
<td>50</td>
<td>109</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Pyridaben</td>
<td>147</td>
<td>24:19.2</td>
<td>0.999</td>
<td>2</td>
<td>92</td>
<td>(4)</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Pyridalyl</td>
<td>204</td>
<td>25:52.2</td>
<td>1.000</td>
<td>1</td>
<td>94</td>
<td>(5)</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Pyridaphentham</td>
<td>97</td>
<td>21:43.9</td>
<td>0.995</td>
<td>5</td>
<td>97</td>
<td>(4)</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Pyrimethanil</td>
<td>198</td>
<td>15:41.1</td>
<td>0.999</td>
<td>2</td>
<td>98</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Silaflufen</td>
<td>179</td>
<td>26:02.4</td>
<td>0.999</td>
<td>5</td>
<td>91</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Simeconazole</td>
<td>121</td>
<td>16:43.1</td>
<td>0.999</td>
<td>2</td>
<td>92</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Spirodiclofen</td>
<td>71</td>
<td>24:10.0</td>
<td>0.994</td>
<td>5</td>
<td>109</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Spiromesifen</td>
<td>272</td>
<td>21:35.8</td>
<td>0.999</td>
<td>20</td>
<td>103</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Tebuconazole</td>
<td>125</td>
<td>21:07.5</td>
<td>0.998</td>
<td>10</td>
<td>93</td>
<td>(11)</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Tebufenozide</td>
<td>133</td>
<td>13:47.6</td>
<td>0.999</td>
<td>2</td>
<td>95</td>
<td>(4)</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Tebufenpyrad</td>
<td>171</td>
<td>22:04.2</td>
<td>0.999</td>
<td>2</td>
<td>95</td>
<td>(4)</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Teflubenzuron</td>
<td>141</td>
<td>10:55.9</td>
<td>0.999</td>
<td>10</td>
<td>106</td>
<td>(5)</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Teflubenzuron</td>
<td>197</td>
<td>11:30.9</td>
<td>0.995</td>
<td>10</td>
<td>106</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Tetraconazole</td>
<td>336</td>
<td>17:42.6</td>
<td>0.999</td>
<td>2</td>
<td>97</td>
<td>(5)</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Tetradoxon</td>
<td>111</td>
<td>22:32.1</td>
<td>0.999</td>
<td>5</td>
<td>100</td>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Thiamethoxam</td>
<td>212</td>
<td>18:00.5</td>
<td>0.990</td>
<td>10</td>
<td>85</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Tralomethrin</td>
<td>181</td>
<td>27:41.2</td>
<td>0.984</td>
<td>50</td>
<td>107</td>
<td>(4)</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Triadimefon</td>
<td>57</td>
<td>17:39.4</td>
<td>0.998</td>
<td>5</td>
<td>100</td>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Triadimenol</td>
<td>112</td>
<td>18:34.2</td>
<td>0.999</td>
<td>5</td>
<td>97</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Triflumizole</td>
<td>278</td>
<td>18:34.2</td>
<td>0.996</td>
<td>5</td>
<td>88</td>
<td>(0)</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Vinlizolin</td>
<td>212</td>
<td>16:39.4</td>
<td>0.999</td>
<td>2</td>
<td>101</td>
<td>(2)</td>
<td></td>
</tr>
</tbody>
</table>

ND: Not determined
1) Retention time
2) Limit of Quantitation

(2) 잔류농약 모니터링 결과

대만으로의 사과 수출을 희망하는 경남 거창군 10개 농가에서 수확 전에 시료를 채취하여 83가지 농약성분에 대해 잔류분석을 하여 대만과 일본으로의 수출 적합성 여부를 검토한 결과, 해당 사과 중 농약 검출현황은 표 10과 표 11에 제시한 바와 같이 약 11종의 농약이 검출되었다. 성분별로는 etofenprox가 검출된 경우가 7농가, tebuconazole 5농가, chlorfluazuron 4농가, chlorpyrifos 4농가, bifenthrin 3농가, boscalid 3농가, fluquinconazole 2농가, metconazole 2농가, trifloxystrobin 2농가, folpet 1농가, spiromesifen 1농가였다. 해당 사과 중 잔류수준은 모두 국내 잔류기준(MRL) 미만으로 내수용으로는 적합하였다. 대만의 positive list에 올라있지 않은 4가지 농약성분(chlorfluazuron, fluquinconazole, folpet, etofenprox)이 검출되어 대만 수출이 불가능하였다. 대만 수출 부적합 성분이 3가지나 검출된 경우가 2농가, 2가지 성분 검출이 2농가, 1가지 성분 검출이 4농가였다. 일본 수출 가능여부에 대해서도 2성분 4농가에서 부적합 판정이 나왔다. 이러한 결과는 수출용 사과의 농약사용 제한에 대한 인식 부족과 수확기 복숭아심식나방, 노린재류 등으로 인한 피해 예방을 위하여 대부분의 농가에서 대만에서 잔류기준이 설정되지 않은 살충제를 살포했기 때문인 것으로 판단된다. 앞으로 수출사과에 대한 농약안전성 컨설팅 및 교육 등 현장기술지원을 확대하여 수출농산물에 대한 안전성확보의 중요성 등 농가의 인식을 전환하기 위한 노력이 요구된다.
표 10. 검출농약별 검출량, 검출빈도 및 수출대상국별 안전성 위반율(2012)

<table>
<thead>
<tr>
<th>No.</th>
<th>검출농약</th>
<th>검출빈도</th>
<th>검출량 (ppm)</th>
<th>국가별 안전성 위반율(농가수/10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>한국</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MRL</td>
</tr>
<tr>
<td>1</td>
<td>Bifenthrin</td>
<td>3</td>
<td>0.03~0.05</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>Boscalid</td>
<td>3</td>
<td>0.10~0.11</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Chlorfluazuron</td>
<td>4</td>
<td>0.18~0.19</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>Chlorpyrifos</td>
<td>4</td>
<td>0.04~0.05</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Etofenprox</td>
<td>7</td>
<td>0.05~0.11</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Fluquinconazole</td>
<td>2</td>
<td>0.11~0.24</td>
<td>0.5</td>
</tr>
<tr>
<td>7</td>
<td>Folpet</td>
<td>1</td>
<td>0.91</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>Metconazole</td>
<td>2</td>
<td>0.14~0.16</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Spiromesifen</td>
<td>1</td>
<td>0.10</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>Tebuconazole</td>
<td>5</td>
<td>0.10~0.38</td>
<td>0.5</td>
</tr>
<tr>
<td>11</td>
<td>Trifloystrobin</td>
<td>2</td>
<td>0.09~0.44</td>
<td>0.7</td>
</tr>
</tbody>
</table>

표 11. 검출농약별 검출량, 검출빈도 및 수출대상국별 안전성 위반율(2013)

<table>
<thead>
<tr>
<th>No.</th>
<th>검출농약</th>
<th>검출빈도</th>
<th>검출량 (ppm)</th>
<th>국가별 안전성 위반율(농가수/10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>한국</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MRL</td>
</tr>
<tr>
<td>1</td>
<td>Bifenthrin</td>
<td>4</td>
<td>0.002~0.01</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>Boscalid</td>
<td>1</td>
<td>0.013</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Captan</td>
<td>4</td>
<td><LOQ~0.101</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Chlorfenapyr</td>
<td>2</td>
<td>0.004~0.005</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Chlorpyrifos</td>
<td>2</td>
<td><LOQ~0.046</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Cyfluthrin</td>
<td>2</td>
<td>0.021~0.044</td>
<td>0.5</td>
</tr>
<tr>
<td>7</td>
<td>Cyproconil</td>
<td>2</td>
<td><LOQ~0.031</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Etofenprox</td>
<td>9</td>
<td>0.003~0.066</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Flonicamid</td>
<td>7</td>
<td><LOQ~0.01</td>
<td>0.7</td>
</tr>
<tr>
<td>10</td>
<td>Flufenoxuron</td>
<td>6</td>
<td><LOQ~0.008</td>
<td>0.7</td>
</tr>
<tr>
<td>11</td>
<td>Fluquinconazole</td>
<td>5</td>
<td><LOQ</td>
<td>0.5</td>
</tr>
<tr>
<td>12</td>
<td>Folpet</td>
<td>1</td>
<td>0.006</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>Kresoxim-methyl</td>
<td>1</td>
<td>0.011</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>Metconazole</td>
<td>3</td>
<td>0.008~0.056</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>Myclobutanil</td>
<td>3</td>
<td>0.003~0.009</td>
<td>0.5</td>
</tr>
<tr>
<td>16</td>
<td>Novaluron</td>
<td>4</td>
<td><LOQ~0.006</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Phosphamidon</td>
<td>1</td>
<td>0.028</td>
<td>0.5</td>
</tr>
</tbody>
</table>
표 12. 검출농약에 대한 농가별 검출량과 표준 편차

<table>
<thead>
<tr>
<th>No.</th>
<th>Pesticide</th>
<th>MRL (ppm)</th>
<th>mean concentration (RSD), n=3, unit:ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Bifenthrin</td>
<td>0.5</td>
<td>ND</td>
</tr>
<tr>
<td>2</td>
<td>Boscalid</td>
<td>1</td>
<td>0.11 (1)</td>
</tr>
<tr>
<td>3</td>
<td>Chlorfluazuron</td>
<td>0.2</td>
<td>0.18 (0)</td>
</tr>
<tr>
<td>4</td>
<td>Chlorpyrifos</td>
<td>1</td>
<td>0.04 (6)</td>
</tr>
<tr>
<td>5</td>
<td>Etofenprox</td>
<td>1</td>
<td>0.06 (17)</td>
</tr>
<tr>
<td>6</td>
<td>Fluquinconazole</td>
<td>0.5</td>
<td>0.11 (0)</td>
</tr>
<tr>
<td>7</td>
<td>Folpet</td>
<td>5</td>
<td>ND</td>
</tr>
<tr>
<td>8</td>
<td>Metconazole</td>
<td>1</td>
<td>0.14 (2)</td>
</tr>
<tr>
<td>9</td>
<td>Spiromesifen</td>
<td>0.5</td>
<td>ND</td>
</tr>
<tr>
<td>10</td>
<td>Tebuconazole</td>
<td>0.5</td>
<td>0.25 (11)</td>
</tr>
<tr>
<td>11</td>
<td>Trifloxystrobin</td>
<td>0.7</td>
<td>ND</td>
</tr>
</tbody>
</table>

(3) 수출사과 쏘지嚆기 유무에 따른 농약잔류량 비교

복숭아식나방 등의 유입 예방 등을 위하여 대만 수출사과에 대한 대만측의 유대재배 요구에 따른 인건비 등 경영비 상승과 사과의 당도저하 등으로 대만 수출 부적합 관정시 소비자의 기피로 국내 판매의 어려움을 겪는 등 수출농가에서 이중 피해를 호소하고 있는 실정이다.

이에 따라 수출농가에서 사과 쏘지羚으로써 잔류량이 얼마나 경감되고 검출이 안되는 경우도 있는지에 대한 민원을 접하는 등 수출농가에서 이중 피해를 호소하고 있는 실정이다.

이에 따라 수출농가에서 사과 쏘지으로써 잔류량이 얼마나 경감되고 검출이 안되는 경우도 있는지에 대한 민원이 있어 사과 쏘지뇐기 유무에 따른 농약잔류량을 비교한 결과는 표 13과 표 14와 같다. 표에서 보는 바와 같이 쏘지 값을 쏘지.PreparedStatement 4~수십배의 경감효과를 보였으며 농약의 종류 및 유효성분 함량에 따라 다르지만 평균적으로 10~15배의 경감효과가 있는 것으로 판단되었다. 이러한 결과로 추정할 때 7월 이전에 사용한 농약은 상당 부분 검출되지 않은 것으로 판단되어 이것에 대한 추가 연구가 필요하다 할 것으로 생각된다.
표 13. 사과 무대, 유대재배에 따른 농약잔류량 비교(후지*)

<table>
<thead>
<tr>
<th>농약명</th>
<th>살포 횟수</th>
<th>시료 구분</th>
<th>경과일수별 농약잔류량(mg/kg)</th>
<th>MRL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>당일</td>
<td>7</td>
</tr>
<tr>
<td>Tebuconazole</td>
<td>3</td>
<td>무대, 유대*</td>
<td>0.22</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>무대, 유대*</td>
<td>0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Chlorantraniliprole</td>
<td>3</td>
<td>무대, 유대*</td>
<td>0.29</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>무대, 유대*</td>
<td>0.02</td>
<td><0.01</td>
</tr>
<tr>
<td>Trifloxystrobin</td>
<td>3</td>
<td>무대, 유대*</td>
<td>1.79</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>무대, 유대*</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>Chlorfenapyr</td>
<td>3</td>
<td>무대, 유대*</td>
<td>1.66</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>무대, 유대*</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

* 두겹봉지

표 14. 사과 무대, 유대재배에 따른 농약잔류량 비교(홍로*)

<table>
<thead>
<tr>
<th>농약명</th>
<th>살포 횟수</th>
<th>시료 구분</th>
<th>경과일수별 농약잔류량(mg/kg)</th>
<th>MRL (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>당일</td>
<td>7</td>
</tr>
<tr>
<td>Tebuconazole</td>
<td>3</td>
<td>무대, 유대</td>
<td>0.94</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>무대, 유대</td>
<td>0.09</td>
<td>0.08</td>
</tr>
<tr>
<td>Chlorantraniliprole</td>
<td>3</td>
<td>무대, 유대*</td>
<td>0.23</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>무대, 유대*</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Trifloxystrobin</td>
<td>3</td>
<td>무대, 유대*</td>
<td>1.24</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>무대, 유대*</td>
<td>0.01</td>
<td>0.08</td>
</tr>
<tr>
<td>Chlorfenapyr</td>
<td>3</td>
<td>무대, 유대*</td>
<td>0.51</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>무대, 유대*</td>
<td>0.03</td>
<td>0.06</td>
</tr>
</tbody>
</table>

(4) 국내 사과등록농약의 대만 잔류기준 설정 및 통관규제 해제를 위한 국제협력

2008.10.21. 대만의 PLS 시행으로 수출 사과의 통관과정 중 잔류농약 초과검출 사례가 빈번하여 한국산 사과에 대한 통관규제(전수조사)를 강화함에 따라 위반 농약을 중심으로 국내 등록농약 중 대만 잔류기준 미설정 농약에 대한 한국의견안을 작성 제출하여 사과 Import Tolerance(IT) 설정을 통한 통관규제를 시도하였다. 2011년 이후 사과에 대한 한국정부의 의견안 제출 및 반영내역은 표 15에 제시하였다. 2014. 1월 현재, 15농약의 대만 잔류기준 설정을 요청하여 Lufenuron 등 11농약에 대한 잔류기준을 반영시킴으로써 잔류농약문제로 인한 무역 장애 요인 해소 등 대만 수출사과의 안전성 확보에 크게 기여하였다.

표 15. 대만 사과 Import Tolerance 신청 및 반영 내역

<table>
<thead>
<tr>
<th>연번</th>
<th>품목</th>
<th>성분명</th>
<th>당초 대만 MRL</th>
<th>현재 대만 MRL</th>
<th>한국 MRL</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>사과</td>
<td>Acequinocyl</td>
<td>미설정(0.01)</td>
<td>0.5</td>
<td>0.5</td>
<td>2011.11.23. 고시</td>
</tr>
<tr>
<td>2</td>
<td>사과</td>
<td>Azoxystrobin</td>
<td>미설정(0.01)</td>
<td>1.0</td>
<td>0.5</td>
<td>2011.09.20. 고시</td>
</tr>
<tr>
<td>3</td>
<td>사과</td>
<td>Bifenazate</td>
<td>미설정(0.01)</td>
<td>0.75</td>
<td>0.2</td>
<td>2011.09.20. 고시</td>
</tr>
<tr>
<td>4</td>
<td>사과</td>
<td>Cyflumetofen</td>
<td>미설정(0.01)</td>
<td>1.0</td>
<td>0.3</td>
<td>2012.06.20. 고시</td>
</tr>
<tr>
<td>5</td>
<td>사과</td>
<td>Diflubenzuron</td>
<td>미설정(0.01)</td>
<td>1.0</td>
<td>1</td>
<td>2012.06.20. 고시</td>
</tr>
<tr>
<td></td>
<td>사과</td>
<td></td>
<td>미설정(0.01)</td>
<td>미설정(0.01)</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>6</td>
<td>사과</td>
<td>Dinotefuran</td>
<td>미설정(0.01)</td>
<td>미설정(0.01)</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>7</td>
<td>사과</td>
<td>Dithianon</td>
<td>미설정(0.01)</td>
<td>미설정(0.01)</td>
<td>5</td>
<td>추가자료 제출</td>
</tr>
<tr>
<td>8</td>
<td>사과</td>
<td>Fluazinam</td>
<td>미설정(0.01)</td>
<td>미설정(0.01)</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>9</td>
<td>사과</td>
<td>Flufenoxuron</td>
<td>미설정(0.01)</td>
<td>미설정(0.01)</td>
<td>1.0</td>
<td>0.7</td>
</tr>
<tr>
<td>10</td>
<td>사과</td>
<td>Lufenuron</td>
<td>미설정(0.01)</td>
<td>미설정(0.01)</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>11</td>
<td>사과</td>
<td>Metconazole</td>
<td>미설정(0.01)</td>
<td>미설정(0.01)</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>사과</td>
<td>Spirodiclofen</td>
<td>미설정(0.01)</td>
<td>미설정(0.01)</td>
<td>0.8</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>사과</td>
<td>Thiodicarb</td>
<td>미설정(0.01)</td>
<td>미설정(0.01)</td>
<td>2.0</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>사과</td>
<td>Etofenprox</td>
<td>미설정(0.01)</td>
<td>미설정(0.01)</td>
<td>1.0</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>사과</td>
<td>Indoxacarb</td>
<td>미설정(0.01)</td>
<td>미설정(0.01)</td>
<td>0.1</td>
<td>〃</td>
</tr>
</tbody>
</table>

(5) 수출사과 농약안전성 컨설팅·교육 및 현장기술지원

대만당국의 한국산 사과에 대한 전수검사 조치(2011.2.1.)를 계기로 수출사과의 안전성 위반 재발방지 및 안전성 확보를 위한 농약안전성 교육 및 컨설팅 등 현장기술 지원을 강화하였다. 영주, 안동 등 주요 사과단지별 권역별 수출농가 및 업체에 대해 12회에 걸쳐 안전성 교육을 실시하였으며 경북통상, 경북농수산대사, 안동 APC, 충주지역사과유통센터 등을 방문하여 업체의 애로사항을 파악하는 등 현장기술지원을 강화하였다.
(6) 대만 수출농산물 농약안전사용지침 및 교육교재, 홍보지원

수출사과의 안전성 교육지원과 더불어 관련 교재를 지자체 등 관련기관에 제공하여 수출사과의 안전성 확보에 활용토록 하였으며 19병해충 580품목의 대만 수출사과 농약안전사용지침을 포함하여 4학문에 수록된 대만 수출농산물 농약안전사용지침을 발간하여 315관련기관 단체에 보급하였다. 또한 수출사과 안전성 확보 관련 보도자료 제출 등 24건의 홍보활동을 지원하였다.

그림 4. 수출사과 안전성확보를 위한 교육교재 및 홍보지원

3. 요약

수출사과의 안전성 확보와 수출확대를 지원하기 위하여 대만 등 주요 수출대상국에 대한 맞춤형 농약안전사용지침을 설정 보급하고 수출농가 및 업체 등에 대한 농약안전성 컨설팅 등 현장교육 및 기술지원을 강화하였다. 대만 수출사과와의 안전성 위반에 따른 통관규제에 대응하기 위해 국내 사과 등록농약의 대만 전류기준 설정을 위한 의견인을 작성·제출하여 반영시켰다. 또한 수출사과 생산현장의 농약사용 문제점을 파악하고 해결하기 위해 수출농가를 대상으로 전류농약 모니터링을 실시하였다.

수출용 사과 국가별 농약안전사용지침은 대만, 미국 등 7국가 193병해충 2,675 농약품목에 대한 맞춤형 지침을 설정 보급하였으며 년 10회 이상의 단기별 전역별 농약안전성 교육 지원 및 현장기술 지원을 실시하였다. 수출사과에 대한 농약사용실태 및 전류농약 모니터링을 실시한 결과, 10 조사농가에서 사용한 농약성분수는 88~89성분이었으며 이중 4성분이 국내 사과 비등록농약이었다. 홍로를 기준으로 농가당 농약살포횟수는 년 12.4~12.9회, 1회당 홍용농약수는 27종이었다. 83성분에 대한 전류분석을 실시한 결과 2012년에는 Etofenprox 등 11성분, 2013년에는 Fluquinconazole 등 22성분이 검출되었으며 국내 전류기준을 초과하는 경우는 없었으나 대만수출 부적합은 4성분으로 8농가가 해당되었으며 일본수출 부적합도 2성분 4농가로 사과 수출농가의 안전성 인식이 아직 낮음을 알 수 있었다. 앞으로 인식 전환을 위한 더많은 교육과 홍보가 필요한 것으로 생각된다. 대만 사과 전류기준 설정을 위한 Diflubenzuron 등 15농약에 대한 IT 신청 결과, Azoxystrobin 등 11농약을 반영시킴으로서 대만 수출사과의 안전성 확보 및 전수검사 해제에 크게 기여할 것으로 판단된다.

제 3절 : 봉군별 봉군을 이용한 사과수분 현장 기술 접목
제 1절 재료 및 방법

1. 사과작목에서 화분매개곤충 이용현황실태조사

가. 국내 사과 재배면적 및 생산량 조사

통계청, 국가통계포털 내, 농작물생산통계에서 1998년~2011년까지 14년간 사과제배면적과 생산량 변화 등을 조사하였다.

나. 시군센터 채소 및 사과 담당자를 대상으로 화분매개곤충 사용현황

사과작목에서 화분매개곤충 사용현황 실태조사는 2011년 1월 15일부터 2011년 7월 15일까지 전국 사과 재배농가, 재배면적, 화분매개곤충 농가수 및 사용량 등을 조사하였다.

다. 사과재배농가를 대상으로 화분매개곤충 농가이용 현황

전국 사과재배농가 429농가를 대상으로 2011년 1월 15일부터 2011년 7월 15일까지 조사하였고, 조사내용은 2011년 사과재배 농가의 제배규모, 소득, 사용기간, 이용효과, 이용방법, 사용 전 화분매개곤충에 대한 교육여부, 화분매개곤충을 사용한 후 이점, 문제점 및 향후 화분매개곤충 이용 의향 등이었다.

라. 통계분석

설문조사에 대한 통계분석은 One-way ANOVA (welch) test (SPSS Inc, 1999), 빈도분석 (Frequencies Analyze) 및 다중응답분석 (Multiple response analyze)을 사용하였다. One-way ANOVA (welch) test는 사과작목에서 전국도별 화분매개곤충 사용량 및 봉군 당 사용면적에 사용하였고, 빈도분석은 사과 재배농가의 연령분포, 재배규모, 소득, 화분매개곤충 사용종류, 기간, 사용량 및 화분매개곤충 이용방법 등 사과재배 농가를 대상으로 한 사과에서 화분매개곤충 농가이용현황 및 향후 사용의향 등에 사용하였다. 다중응답분석은 화분매개곤충 사용 시 이점과 문제점에 이용하였다.
주봉군의 일벌과 투입하고자 하는 보충용 외래일벌간의 공격성을 해소하기 위해서 (Ono et al., 1994), 보충용 일벌에 대한 마취 방법과 시간을 달리하여 봉군내 일벌 투 입효과를 조사한 결과, 효과가 뛰어나고 편리한 탄산가스에 30분간 접촉시키는 방법을 사 용하였다(Yoon et al., 2006). 실험군층은 인공적으로 월동시킨 5세대 시양뒤영벌 여왕 벌을 가지고 실내에서 개체수족한 후 일벌이 100마리 되는 시점인 봉군형성기에는 봉군 에서 외래일벌을 수집하여 사용하였다. 일벌이 100마리가 되는 봉군형성기의 봉군에 탄 산가스로 마취된 일벌 100마리를 투입하는 것으로 하였다. 일벌 100마리인 정상봉군과 일벌이 100마리인 정상봉군에 탄산가스 처리한 일벌 100마리를 추가한 봉군 등 실험구 당 2반복으로 2회 실시하였다.

3. 사과원에서 정상봉군과 외래일벌 보충봉군의 화분매개활동 및 사용 후 봉세발달 비교

일벌 100마리인 정상봉군과 일벌 100마리인 외래일벌 100마리가 추가된 봉군 을 가지고 사과원에서 15분간 소문 출입일벌수로 화분매개 활동량을 조사하였다. 시험은 2회에 걸쳐서 행하였다. 1차 시험은 당진 사과원에서 2008년 4월 25일에서 5월 1일까 지, 2차 시험은 국립원예특작과학원 2008년 4월 25일에서 4월 30일까지 조사하였다. 조사내용은 시간, 온도, 습도에 따른 정상봉군과 외래일벌투입 봉군과의 화분매개활동 비율을 조사하였다. 또한 외래투입 일벌이 봉군에 미치는 영향을 알아보기 15일 동안 사 과원에서 화분매개활동을 조사한 후 봉군을 실내로 가져와서 남아있는 일벌수, 수벌수, 신여왕벌출현수, 유충 및 난괴 수 등 봉세발달을 조사하였다.

라. 화분매개곤충별 사과의 착과율 및 수량 조사

화분매개곤충별 사과의 착과율과 수량을 조사하기 위해 실험군층으로 서양뒤영벌(B. terrestris)과 머리뿔가위벌(Osmia cornifrons)을 사용하였다. 서양뒤영벌은 사과수분 용으로 개발된 외래일벌이 보충된 서양뒤영벌 봉군을 사용하였다. 즉 일벌 150마리인 정 상봉군에 외래일벌 100마리가 보충된 봉군을 사용하였다. 머리뿔가위벌은 경북잠사곤충 사업장에서 구입한 약 400마리, 수컷 700마리로 구성된 1,100마리를 사용하였다. 실험 장소는 당진 사과원의에서 실시하였고 실험품종은 홍로로 하였다. 대조로 자연수분을 하였다. 본 실험의 통계분석에는 Tukey’s pairwise comparisons test and Chi-square test (MINITAB Release 16 for Windows, Minitab Inc. 2012)를 사용하였다.

4. 태영벌봉군에 의한 사과수분법 현장기술 적용

태영벌 이용 사과수분기술 현장 평가회를 통한 「강소농 수익모델」 창출을 위해 사과 수분 을 위한 화분매개곤충 태영벌 현장 투입 기술하였다. 사과안정 생산을 위한 태영벌을 이용한 수분법을 위하여, 이상기온 시 태영벌 일벌을 이용한 봉군의 활력 유지방법, 태영벌 봉군의 현 장 설치방법 및 사후 관리법 등을 교육내용으로 하여, 청송, 포천, 밀양, 영주, 당진 등 5개 지역 총 515장식으로 현장 기술점용 및 교육을 행하였다.
제 2절 결과 및 고찰

1. 사과작목에서 화분매개곤충 이용현황실태조사

가. 통계청에 의한 국내 사과 재배면적 및 생산량

사과 생산량의 경우(Fig. 1), 1998년에는 459,010톤에서 1999년에는 생산량이 6.8%까지 증가하였으나, 2000년부터 서서히 생산량이 감소하기 시작하여 2004년도에는 357,180톤으로 1998년도에 비하여 약 22.1%가 감소하였다. 2005년 이후부터는 조금씩 증가하는 추세를 보이다가 2010년도부터 다시 감소하기 시작하여 2011년도에는 379,541톤으로 1998년 기준으로 약 17.3%가 줄어들었다. 즉 2011년도 사과의 재배면적은 1998년 기준으로 10.2% 감소하였고, 사과생산량은 17.3% 감소하는 경향을 보였다.

나. 시군센터 채소 및 사과 담당자를 대상으로 화분매개곤충 사용현황

(1) 전국 사과 재배 면적 및 재배 농가수

전국 사과 재배면적 및 재배농가수를 Table 1에 나타내었다. 사과재배면적의 경우, 경상북도가 21,697.5h로 전체의 62.5%를 차지하였으며, 그 다음이 충청북도 4,565.6ha(13.1%), 경상남도 3,066.6ha(8.7%), 충청남도 2,304ha(6.6%), 전라북도 2,040.6ha(5.9%) 등의 순이었다. 전국 사과 재배면적은 각 도별로 차이가 확인되었으며(Welch’s ANOVA test df1=8, df2=22.067, F=3.652, p=0.007, Tukey HSD), 2011년 우리나라 총 사과재배면적

Fig. 1. Total cultural area and products in apple crop (2012, Statistics Korea).
적은 34,735.7ha이었다(Table 1). 통계청 농산물 생산통계자료에 의하면 2011년 사과의 재배면적은 31,167ha로 보고되었다(Fig. 1). 이번 조사에서 얻어진 사과재배면적이 통계청 자료보다 3,568.7ha가 더 많은 것으로 나타났다. 일반적으로 통계청자료는 일정 농가를 표본 추출하여 계산된 통계수치로서 표본오차가 존재하는데 표본오차의 CV값(표준오차/평균×100) 이 2.37, 95% 신뢰구간은 29,719-32,614ha%이었다.

이번 조사에서 얻어진 사과재배면적을 통계청 자료보다 3,568.7ha가 더 많은 것으로 탐색되나, 일반적으로 통계청자료는 일정 농가를 표본 추출하여 계산된 통계수치로서 표본오차가 존재하는데 표본오차의 CV값(표준오차/평균×100) 이 2.37, 95% 신뢰구간은 29,719-32,614ha%이었다. 이번 조사에서 수행한 전국 사과재배면적 34,735.72ha로 통계청에서의 최대오차범위보다 2,120.9ha가 더 많으나 통계청의 사과재배면적조사는 514개 필지의 사과경작자의 면접을 통한 표본조사 방식으로 본조사의 전수조사와 비교해 볼 때 정확도가 떨어지므로 본 조사의 신뢰도가 더 높다고 생각된다.

우리나라 사과재배 농가수는 재배면적과 같은 경향으로 경상북도가 24,648농가로 전체의 64.5%를 차지하였으며, 그다음이 충청북도 4,808농가(12.6%), 경상남도 3,510농가(9.1%), 충청남도 2,252농가(5.9%) 등이 순이었다. 2011년 우리나라 사과재배 총 농가수는 38,288농가였다.

Table 1. The area and number of farmer of insect pollinator use in apple crop, 2011

<table>
<thead>
<tr>
<th>Surveyed province</th>
<th>No. of cultural region</th>
<th>Cultural area (ha)</th>
<th>Area of insect pollinator use (ha)</th>
<th>No. of farmer of insect pollinator use</th>
<th>No. of farmer of insect pollinator use/Cultural area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gangwon</td>
<td>16</td>
<td>408.1</td>
<td>51.5</td>
<td>12.6</td>
<td>623</td>
</tr>
<tr>
<td>Gyeonggi</td>
<td>14</td>
<td>371.5</td>
<td>72.7</td>
<td>19.6</td>
<td>414</td>
</tr>
<tr>
<td>Chungbuk</td>
<td>12</td>
<td>4,565.6</td>
<td>157.3</td>
<td>3.4</td>
<td>4,808</td>
</tr>
<tr>
<td>Chungnam</td>
<td>15</td>
<td>2,304.0</td>
<td>477.3</td>
<td>20.7</td>
<td>2,252</td>
</tr>
<tr>
<td>Jeonbuk</td>
<td>11</td>
<td>2,040.6</td>
<td>304</td>
<td>14.9</td>
<td>1,737</td>
</tr>
<tr>
<td>Jeonnam</td>
<td>3</td>
<td>311.8</td>
<td>49</td>
<td>15.7</td>
<td>296</td>
</tr>
<tr>
<td>Gyeongbuk</td>
<td>24</td>
<td>21,697.5</td>
<td>3,873.3</td>
<td>17.9</td>
<td>24,648</td>
</tr>
<tr>
<td>Gyeongnam</td>
<td>8</td>
<td>3,036.6</td>
<td>685.8</td>
<td>22.6</td>
<td>3,510</td>
</tr>
<tr>
<td>Total</td>
<td>103</td>
<td>34,735.7</td>
<td>5,670.9</td>
<td>16.3</td>
<td>38,288</td>
</tr>
</tbody>
</table>

1) There was significant difference in the cultural area of each province at p < 0.05 using one-way ANOVA (welch) test.
2) There was no significant difference in the rate of area of insect pollinator use per cultural area at p < 0.05 using one-way ANOVA (welch) test.
3) There was no significant difference in the rate of insect pollinator farmer per cultural farmer at p < 0.05 using one-way ANOVA (welch) test.

(2) 사과재배에서 화분매개곤충 사용 면적, 농가수 및 사용량

103개 시군센터의 과수 및 사과 담당자를 대상으로 사과재배농가가 사용하는 화분매개곤충 사용 규모를 조사하였다. Table 1에서 보는 바와 같이 화분매개곤충을 사용하는 면적이 가장 넓은 지역은 경상북도로 3,873.3ha로 68.3%를 차지하여 가장 높였으며, 그다음이 경상남도 685.8ha(12.1%), 충청남도 477.3ha(8.4%), 전라북도 304ha(5.4%) 순이었으며, 전국 화분매개곤충 총 사용면적은 5,670.9ha(16.3%) 이었다. 사과재배면적당 화분매개
곤충 사용면적을 조사한 결과(Table 1), 경상남도가 22.6%로 가장 높았고 그다음이 충청남도로 20.7%, 경기도 19.6%로 나타났으며, 경상북도, 전라남도, 전라북도 및 강원도는 17.9%~12.6% 사이였고, 충청북도는 사과재배면적당 화분매개곤충 사용면적이 3.4%에 불과하였다. 우리나라 사과재배면적 중 화분매개곤충을 사용하는 면적은 16.3%이었다. 사과재배농가당 화분매개곤충 이용 농가를 조사한 결과(Table 1), 충청남도와 경상남도가 각각 20.5%와 20.4%이었고 그다음이 전라북도(16.9%), 경기도(15.9%), 경상북도(15.8%) 순으로 나타났으며, 충청북도는 사과재배농가당 화분매개곤충 이용 농가가 3.0%에 불과하였다. 우리나라 사과재배농가 중 화분매개곤충을 사용하는 농가는 14.8%이었다. 지역별로 살펴보면 (Table 2), 안동시가 760농가로 전체의 13.4%를 차지하였고 그다음이 청송군 685농가(12.1%)이었으며, 충청남도 예산군(229농가, 4.1%)을 제외하고 화분매개곤충 사용농가가 200호 이상인 지역은 경상북도와 경상남도 뿐이었다. 사과에서 총 화분매개곤충 이용 농가수는 5,652농가로 나타났다.

Fig. 2. The number of quality of insect pollinator use in apple crop, 2011 at survey by agriculture technology center.
Fig. 3. Percentage of insect pollinator use at survey by agriculture technology center (A) and cultivation farmer (B) in apple crop.

시군센터를 대상으로 2011년도 사과에서 사용한 화분매개곤충 종류를 조사한 결과를 Fig. 3A에 나타내었다. 화분매개곤충을 사용한 5,652농가 중 꿀벌이 36.4%, 뒤영벌이 32.3% 그리고 뿔가위벌류가 31.4%로 3종류의 화분매개곤충이 거의 비슷한 비율로 사용되는 것으로 나타났다. 사과에서 뒤영벌을 많이 사용한 이유는 2011년도에 꿀벌이 낫충봉아부패병 바이러스 등으로 폐사하는 봉군이 많아서 대체 화분매개곤충으로 뒤영벌을 사용한 것으로 판단된다. 또한 기상이 불량한 경우나 저온과 호린 날씨 등에도 방화활동을 잘 하는 뒤영벌의 장점(Iwasaki, 1995; Yoon et al., 2011)도 한 몫을 차지하는 것으로 생각된다. 뿔가위벌류는 기후변화 등으로 자연 증식이 어려워 공급량 부족으로 사용량이 감소한 것으로 판단된다. Lee et al. (2008)은 자연 상태에서 사과꽃에 방화하는 주요종은 꿀벌, 뒤영벌, 뿔가위벌류 3종류 모두, 경상북도가 53.8-97.5%로 가장 많이 사용하였고, 그다음이 경상남도(1.0-14.9%), 충청남도(0.8-14.7%), 전라북도(0.7-10.7%) 순이었다. 도별로 화분매개곤충 사용량은 통계적으로 유의성이 확인되었다(Welch’s ANOVA test df1=6, df2=15.029, F=3.363, p=0.026, LSD).

사과작목에서 화분매개곤충 종류별로 사용 지역 및 농가수를 조사한 결과(Table 3), 꿀벌과 뒤영벌의 경우, 경상북도가 1,046-1,153농가(50.9-63.2%)로 가장 많았고, 그다음이 경상남도 370-315농가(18.0-17.3%), 충청남도 287-147농가(14.0-8.1%), 전라북도 167-110농가(8.1-6.0%) 순으로 나타났다. 나머지 도는 사용농가수가 1%대였다. 뿔가위벌류의 경우, 대부분의 사용농가가 경상북도(1,691농가, 96.4%)에 집중되어 있었으며, 그 외의 도는 1%대 정도의 농가만이 뿔가위벌류를 사용하였다. 도별 평균 화분매개곤충 사용농가 수는 통계적으로 차이가 있었다(Welch’s ANOVA test df1=6, df2=16.115, F=4.557, p=0.007, Tukey HSD). 화분매개곤충을 사용할 경우, 사용하는 화분매개곤충의 봉군수가 적
정한 지를 알아보기 위해서 조사된 시군센터수로 1봉군 당 평균사용면적(㎡)을 조사하였다. 꿀벌의 경우, 1봉군 당 평균 사용면적은 4,834㎡이었으며, 경상북도가 4,188㎡에 1봉군을 사용하는데 반하여 강원도와 전라남도는 9,074-10,000㎡에 1봉군을 사용하여 각 도별 상당한 차이가 있었다. 뒤영벌과 땀가위벌류도 지역별로 상당한 차이를 보였으며, 뒤영벌과 땀가위벌류의 1봉군 당 평균 사용면적은 각각 3,206㎡와 3,997㎡이었다. 1봉군 당 평균 사용면적은 꿀벌이 가장 넓었고, 땀가위벌류, 뒤영벌 순이었다. 일반적으로 화분매개곤충의 종류에 따라 유효활동거리에 차이가 있는데 꿀벌은 1km(최대 2km), 뒤영벌은 1-4km 그리고 땀가위벌류는 50-60m(최대 500m)인 것으로 보고되고 있다(James & Pitts-Singer, 2008; Tautz, 2008; Willmer, 2011).

Table 2. The number of farmer of insect pollinator use at each locality at in apple crop, 2011

<table>
<thead>
<tr>
<th>Locality</th>
<th>Gangwon</th>
<th>Gyeonggi</th>
<th>Chungbuk</th>
<th>Chungnam</th>
<th>Jeonbuk</th>
<th>Jeonnam</th>
<th>Gyeongbuk</th>
<th>Gyeongnam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of farmhouse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wonju</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>10</td>
<td>10</td>
<td>41</td>
<td>210</td>
</tr>
<tr>
<td>Young- wol</td>
<td>14</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Pyeong- chang</td>
<td>34</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Yang- gu</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dong- hae</td>
<td>1</td>
<td>20</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Geum- san</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Buyeo</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Hong- seong</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Yesan</td>
<td>229</td>
<td>229</td>
<td>229</td>
<td>229</td>
<td>229</td>
<td>229</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>Taean</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>66</td>
<td>146</td>
<td>461</td>
<td>293</td>
<td>41</td>
<td>3,890</td>
<td>715</td>
</tr>
<tr>
<td></td>
<td>(0.7)</td>
<td>(1.2)</td>
<td>(2.6)</td>
<td>(8.2)</td>
<td>(5.2)</td>
<td>(0.7)</td>
<td>(68.8)</td>
<td>(12.7)</td>
</tr>
</tbody>
</table>

Table 3. The number of farmer at different insect pollinators use in apple crop, 2011
다. 사과재배농가를 대상으로 화분매개곤충 농가이용 현황

(1) 사과재배 농가의 연령분포, 재배규모, 소득 및 종류

사과 재배농가의 연령의 경우, 50대가 43.3%로 가장 많았고, 그다음이 60대 22.5%, 40대 21.5% 순이었으며, 40-60대가 전체의 87.3%를 차지하였다. 또한 사과는 95.7%가 남성들에 의해 재배되고 있었다. 사과 재배규모를 조사한 결과, 16,500㎡-23,100㎡가 28.3%로 가장 많았고, 그다음이 9,900㎡-16,500㎡가 26.3%를 차지하였고, 36,300㎡이상은 8.1%에 불과하였다(Fig. 4A). 사과 재배농가의 평균 재배규모는 21,028.3±15,792.2㎡로 나타났다. 사과재배기간을 조사한 결과, 8년 이상이 79.6%로 가장 많았고, 그다음이 4-5년 8.4%, 6-7년 7.6% 순이었다(Fig. 4B). 사과재배농가의 평균 사과 재배기간은 11.5±3.9년이었다. 농가당 연소득을 조사한 결과, 1억원-2억원이 33.3%로 가장 많았고, 그다음이 6천만원-8천만원이 22.4%로 가장 많았고, 그다음이 9천만원-1억원이 15.2%를 차지하였다. 2억원 이상의 연소득을 올리는 농가도 10.3%를 차지하였으며, 사과 재배농가의 평균 연소득은 92,012.1±65,423.7천원으로 나타났다. 또한 재배되고 있는 사과 종류를 조사한 결과, 주품종의 경우, 후지가 83.5%를 차지하여 가장 많았고, 그다음이 홍라 12.4%, 아오리 1.5% 순이었으며, 감홍, 미시마, 기꾸, 요까, 시나노스위트 등은 1% 미만이었다. 부품종의 경우, 홍로가 60.5%로 가장 많았고, 시나노스위트, 쓰가루, 히로사끼, 감홍, 요까, 자홍 등은 10% 미만이었다. 2007년도 NAQS자료에 의하면 국내 사과원에서 주로 재배되고 있는 사과 품종은 후지(63.0%), 홍로(10.5%), 쓰가루(6.9%), 기타(19.6%)로 보고되었다.

502농가를 대상으로 사과 화분매개를 위해 사용하는 방법을 조사한 결과, 화분매개곤충 만 사용이 16.3%를 차지하였으며, 화분매개곤충과 인공수분 검용이 45.6%, 화분매개곤충과 호르몬제 겸용은 21.5%, 그리고 화분매개곤충과 기타 영양제 등 검용해서 사용하는 경우가 9.0%를 나타내어 화분매개곤충을 단독으로 사용하는 것보다는 화분매개곤충과 다른 수분방법을 검용해서 사용하는 것이 훨씬 높은 것으로 나타났다. 화분매개곤충 외 수분방법으로는 인공수분이 74.1%로 가장 많았다.

<table>
<thead>
<tr>
<th>Surveyed province</th>
<th>Total</th>
<th>Honeybees</th>
<th>Bumblebees</th>
<th>Mason bees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gangwon</td>
<td>40</td>
<td>15</td>
<td>21</td>
<td>4</td>
</tr>
<tr>
<td>Gyeonggi</td>
<td>66</td>
<td>34</td>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>Chungbuk</td>
<td>146</td>
<td>125</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>Chungnam</td>
<td>461</td>
<td>287</td>
<td>147</td>
<td>27</td>
</tr>
<tr>
<td>Jeonbuk</td>
<td>293</td>
<td>167</td>
<td>110</td>
<td>16</td>
</tr>
<tr>
<td>Jeonnam</td>
<td>41</td>
<td>12</td>
<td>26</td>
<td>3</td>
</tr>
<tr>
<td>Gyeongbuk</td>
<td>3,890</td>
<td>1,046</td>
<td>1,153</td>
<td>1,691</td>
</tr>
<tr>
<td>Gyeongnam</td>
<td>715</td>
<td>370</td>
<td>315</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>5,652</td>
<td>2,056</td>
<td>1,823</td>
<td>1,773</td>
</tr>
</tbody>
</table>

1) There was significant difference in number of farmer of insect pollinator use at each province at p < 0.05 using one-way ANOVA (welch) test.
(2) 사과 재배농가의 화분매개곤충 사용종류, 사용기간 및 사용량
사과재배농가에서 사용하는 화분매개곤충 종류를 알아보기 위해서 설문에 응답한 391농가를 대상으로 조사한 결과(Fig. 3B), 꿀벌이 41.2%로 가장 많았다. 뒤영벌과 뿔가위벌류는 각각 29.4%로 꿀벌이 약 1.4배 많이 사용하는 것으로 나타났으며 통계적으로 유의성이 확인되었다(Chi-square test, df=5, χ²=283.517, p=0.0001). 이러한 결과는 화분매개곤충을 사용한 5,652농가를 대상으로 조사한 시군센터 조사 결과와 다소 차이를 보였다. 시군센터 조사 결과는 꿀벌 36.5%, 뒤영벌 32.4% 그리고 뿔가위벌류가 31.4%로 3종류의 화분매개곤충이 거의 비슷한 비율로 사용하는 것으로 나타났다(Fig. 3A). 비록 조사 표본수는 시군센터가 많지만 사용농가에서 조사한 결과가 더 정확할 것이라 판단된다. 결론적으로 사과재배농가에서 화분매개곤충 사용종류를 조사한 결과(Fig. 4B), 2-3년이 26.6%, 그리고 8년 이상이 26.3%로 나타났고, 4-5년이 21.3%를 차지하였다. 사과재배 농가가 사과 수분을 겸비한 화분매개곤충을 사용한 평균기간은 5.2±3.3년이었다. 화분매개곤충별 농가당 사용량을 조사한 결과를 Fig. 5에 나타내었다. 농가당 꿀벌사용량은 2-5봉군이 62.5%로 가장 많았고 그다음은 6-10봉군이 14.9%, 11-20봉군이 14.0%를 나타내었다(Fig. 5A). 사과재배 농가당 평균 꿀벌 사용량은 9.0±10.3봉군이었다. 농가당 뒤영벌사용량은 6-10봉군이 42.9%로 가장 많았고, 그다음이 11-15봉군 28.6%, 2-5봉군 23.2%를 나타내었으며, 농가당 평균 뒤영벌 사용봉군수는 9.1±5.3봉군이었다(Fig. 5B). 뿔가위벌류의 경우 1봉을 500마리로 볼 경우, 1-5봉이 64.6%로 가장 많았고 그다음이 6-10봉 33.3%, 10봉 이상 21.1% 순으로 나타났으며(Fig. 5C), 농가당 평균 뿔가위벌류 사용봉군수는 5.3±5.6봉군이었다. 3,300㎡당 화분매개곤충울 평균 사용량을 Fig. 6에 나타내었다. 3,300㎡당 평균 꿀벌 사용량은 2.1±0.3봉군이었고, 뒤영벌은 3.7±0.3봉군이었으며, 뿔가위벌류는 6.8±1.5봉군이었다. 화분매개곤충 종류별 3,300㎡당 사용량은 통계적으로 유의성을 보여 차이가 있음이 확인되었다.
Fig. 5. Use amount of honeybees (A), bumblebees (B) and mason bees (C) per cultivation farmer in apple crop.

Fig. 6. Use amount of honeybees, bumblebees and mason bees per 3,300㎡ in apple crop.

(3) 시설사과 재배농가의 화분매개곤충 사용 방법, 기간, 가격

사과에 사용하고 있는 화분매개곤충의 이용방법을 여부를 387농가를 대상으로 조사하였다(Fig. 7). 그 결과, 33.3%가 ‘잘알고있다’로 대답하였고, 34.1%가 ‘알고있다’, 24.5%가 ‘약간알고있다’로 대답하여 사과 재배농가의 91.9%가 알고 있는 것으로 나타났으며, 잘 모르거나, 전혀 모르는 농가는 8.1%에 불과하여 대체적으로 사과에서 화분매개곤충 뒤영벌의 이용방법을 알고 있는 것으로 나타났다(Fig. 7A). 화분매개곤충별로 조사한 결과, 꿀벌의 경우, ‘알고있다’가 89.7%(Fig. 7B), 뒤영벌은 95.5%(Fig. 7C), 뚱가위벌류는 99.1%가 알
고있다(Fig. 7D)로 나와 대체적으로 뿔가위벌의 사용방법에 대해서 뒤영벌이나 꿀벌보다 잘 알고 있는 것으로 조사되었다(one way ANOVA: F=8.191, df=2, p<0.000, (post-hoc analysis : tukey HSD)).

사과 개화기에 화분매개곤충별로 평균사용기간을 조사한 결과(Fig. 8), 꿀벌 21.5±16.7일, 뒤영벌 21.7±17.4일, 그리고 뿔가위벌류는 30.9±26.7일이었다(Welch's ANOVA test: df=1, df2=157.242, F=8.283, p=0.009). 개화기에 뿔가위벌류의 사용기간이 가장 긴데 이는 꿀벌과 뒤영벌과 달리 뿔가위벌류는 증식을 위해서 사과원이 그대로 두기 때문이라고 생각된다. 사과 개화기에 사용기간은 화분매개곤충별로 차이가 확인되었다(Chi-square test, df=8, x²=19.640, p=0.012). 화분매개곤충별로 구입가격에 대한 조사한 결과, 화분매개용 꿀벌의 평균 구입가격은 80,937±51,675원이었고, 뒤영벌은 68,715±17,944원, 뿔가위벌류는 45,255±34,851원이었다. 이상의 결과로 볼 때 꿀벌 구입가격이 가장 비싸고, 그다음이 뒤영벌, 뿔가위벌류 순으로 나타났다(one way ANOVA F=23.567, df=2, p<0.0001, (post-hoc analysis : tukey HSD).

Fig. 8. The use duration of Insect pollinators, honeybees, bumblebees and mason bees colony at the flowering time of apple.
Fig. 7. The using method degree of Insect pollinators (A), honeybees(B), bumblebees(C) and mason bees (D) colony in apple crop.

(4) 사과에서 화분매개곤충 뒤영벌 사용 시 효과 및 향후 사용계획
사과 재배농가 352농가를 대상으로 품질향상, 결실률 향상, 노동력 절감, 기상조건 불량 시 효과적인 수분에 대한 화분매개곤충 이용 시 이점을 우선순위로 조사한 결과(Fig. 9A), 결실률 향상(30.7%), 품질향상(27.1%), 기상조건 불량 시 효과적인 수분(20.9%), 노동력 절감(20.6%) 순이었다. 화분매개곤충 종류별로도 비슷한 경향을 보였다. 화분매개곤충 이용 시 문제점으로는 기상조건 불량 시 화분매개곤충의 활동부족 25.1%로 가장 높았으며, 설치, 관리의 번거로움 16.5%, 가격부담이 15.3%, 매뉴얼 및 교육부족 13.7%, 공급처 부족 5.0% 순이었다(Fig. 9A). 화분매개곤충 종류별로 약간씩의 차이는 있으나, 대체적으로 기상불량 시 활동량 부족이 제일 문제가 되는 것으로 나타났다.
373농가를 대상으로 사과에서 화분매개곤충에 대한 만족도를 조사한 결과, Fig. 10A에서 보는 바와 같이 매우만족 18.2%, 만족 48.5%로 만족이상이 66.7%를 나타냈고, 불만족보다고 한 비율은 4.0%에 불과해, 사과에서 화분매개곤충 사용에 대해서 대체로 만족하는 것으로 나타났다. 화분매개곤충 종류별로 분석한 결과도 비슷한 경향을 보여주었다. 앞으로 화분매개
곤충을 사용할 의향 여부를 조사한 결과(Fig. 10B), 사용 확대 54.2%, 현행유지가 39.1%였으며, 축소하겠다는 의견은 6.7%만을 보여 화분매개곤충 사용에 대해서 상당히 긍정적인 반응을 나타내었다. 화분매개곤충 종류별도 비슷한 경향을 보였지만 뒤영벌의 경우, 사용을 축소하겠다는 의견이 꿀벌과 뿔가위벌류보다 2.8-4.4배 높게 나타났다. 이러한 결과로 볼 때, 사과에서 뒤영벌 사용법에 대한 효과검정 여부와 교육에 대한 지원이 있어야 한다고 생각되어졌다.

Fig. 9. Advantage (A) and Problem (B) at insect pollinators use.

Fig. 10. Satisfaction degree (A) and plan for insect pollinators (B).

2. 사과수분에 적합한 뒤영벌 봉군개발
가. 사과에서 정상봉군 뒤영벌과 외래일벌 보충봉군 뒤영벌의 화분매개활동
시설과체류에 사용하는 뒤영벌을 사과에 이용하기 위해서 사과에 맞는 뒤영벌 봉군을 개발하기 위해서 봉군 형성 시기에 폐봉군의 일벌을 탄산가스로 마취한 외래일벌을 보충한 봉군을 만들었다. 이렇게 만들어진 외래일벌 보충봉군이 정상 봉군처럼 방화 활동을 하는지 여부
를 조사한 하기 위하여(Fig. 5 A and B), 정상 봉군과 외래일벌 보충봉군을 사과원에 방사한 결과, Fig. 1에서 보는 바와 같이 15분당 평균 출입봉비율은 정상봉군이 15.6±3.0%로 12.7±3.0%인 외래일벌 보충봉군보다 3%정도 활동비율이 높았다. 정상봉군과 외래일벌 보충봉군 간에 유의성이 확인되었다(Tukey’s pairwise comparisons test, F= 7.01, DF=1, 28, p=0.013). 비록 방화활동비율은 정상봉군이 높았지만 활동마리수를 보면 정상봉군이 평균 3.0마리, 외래일벌 보충봉군이 6.1마리로 2배 이상이 많아서 사과수정에 효율적인 것으로 나타났다. 따라서 서양뒤영벌을 사과원에서 사용할 경우에 탄산가스 처리로 일벌을 보충하여 마리수를 늘리는 방법이 아주 좋은 효과적인 것으로 판단된다.

시간, 온도, 습도에 따른 정상봉군과 외래일벌 보충봉군과의 화분매개활동 비율을 조사하였다. 시간별로 서양뒤영벌의 방화활동을 조사한 결과(Fig. 2), 대체적으로 오후 3시경보다 방화활동비율이 높은 경향을 보였으며, 정상봉군과 외래일벌 보충봉군 간의 방화활동비율은 시간별로 차이는 없는 것으로 조사되었다(F= 2.00, DF=1, 8, p=0.195). 온도별 방화활동 비율을 조사한 결과(Fig. 3), 13°C-19°C의 다소 낮은 온도에서도 평균 8.0%-20.0%가 활동을 하였으며, 실험 봉군 간에는 역시 통계적 유의성이 없었다(F= 2.00, DF=1, 8, p=0.195). Fig. 4에서 보는 바와 같이, 습도별 봉군 간의 방화활동 비율 역시 같은 경향을 보였으나(F= 2.00, DF=1, 8, p=0.195), 서양뒤영벌은 습도가 70%이 상이어도 활동이 상당히 높음을 알 수 있었다. 기상환경조건과 관련하여 서양뒤영벌은 꿀벌보다는 온도, 조도 및 자외선에 영향을 덜 받으며, 또한 온도가 높고 습도가 낮을수록 방화활동수가 많다고 보고하였다(Tasjikawa, 1981). 일반적으로 방화곤충의 비래활동 또는 비래 수는 주어진 생태환경조건 뿐만 아니라 시간과 기상요인과의 관계, 화분분비와 화분생성 정도와 생태학의 관계, 그들의 상호작용 여하에 따라 큰 차이 또는 변동을 나타낸다고 보고하였다(Gary, 1967; Kefuse and Nye, 1970; Szabo, 1980).
Fig. 2. The average rate of foraging activity at normal (control) bumblebee colony and recruited bumblebee colony at different days and times.

Fig. 3. The average rate of foraging activity at normal (control) bumblebee colony and recruited bumblebee colony at different temperatures in apple orchard.
Fig. 4. The average rate of foraging activity at normal(control) bumblebee colony and recruited bumblebee colony at different humidities in apple orchard.

Fig. 5. Colony (A) and pollinating activity (B) of bumblebee in apple orchard.

나. 사과 수정 후 수거한 정상봉군과 외래일벌 보충봉군의 봉세발달
외래투입 일벌이 봉군에 미치는 영향을 알아보기 15일 동안 사과원에서 화분매개활동을 한 정상봉군과 외래일벌 보충봉군의 봉세발달을 조사하였다. Table 1에서 보는 바와 같이 외래일벌 보충봉군의 일벌이 많이 남아있었고(F= 53.00, DF=1, 2, p=0.018), 수별은 다소 적은 것으로 나타났지만 유의성은 없었다(F= 0.33, DF=1, 2, p=0.625). 신여왕벌수를 제외하고 유충수와 난괴수도 많은 것으로 나타났지만 통계적 차이는 없었다(신여왕벌수, F= 0.22, DF=1, 2, p=0.688; 유충수, F= 0.15, DF=1, 2, p=0.737; 난괴수, F= 0.49, DF=1, 2, p=0.555). 이상의 봉세발달의 결과로 볼 때, 정상적인 봉군에 마취된 외래일벌 보충봉군이 정상봉군보다 다소 좋은 것으로 나타났다. 따라서 투입된 외래일벌이 봉군의 봉세발달에 영향을 미치지 않는 것으로 생각된다.
Table 1. Colony size of Bumblebee, *B. terrestris* after 15 days-pollinating in apple orchard

<table>
<thead>
<tr>
<th>Apple orchard</th>
<th>Foreign workers</th>
<th>No. of existed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Worker</td>
<td>Male</td>
</tr>
<tr>
<td>Suwon</td>
<td>Recruited</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>23</td>
</tr>
<tr>
<td>Dangjin</td>
<td>Recruited</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>21</td>
</tr>
</tbody>
</table>

1) Recruited colony was involved CO$_2$-treated 100 workers in normal colony.

Table 2. Rate of fruit set and product amount at different pollination methods

<table>
<thead>
<tr>
<th></th>
<th>No pollination</th>
<th>B. terrestris</th>
<th>O. cornifrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of fruit set (%)</td>
<td>77.5</td>
<td>96.5</td>
<td>90.0</td>
</tr>
<tr>
<td>Product amount (kg)</td>
<td>43.8</td>
<td>66.8</td>
<td>62.1</td>
</tr>
</tbody>
</table>

1) Surveyed variety and number of flower bud were Honglo and 200.

3. **뒤영벌을 이용한 사과수분법의 노동절감률 조사**
인공수분 대비 화분매개곤충 뒤영벌을 이용한 사과 수분 노동력은 그림 1에서 보는 바와 같이 93%나 절감되었다. 또한 표 1에서 보는 바와 같이 뒤영벌 이용시 인공수분 대비 비용 절감 효과가 10a당 14,000원으로 나타났다.

그림 1. 사과원에서 인공수분 대비 화분매개곤충 뒤영벌의 수분노력지수

표 1. 인공수분과 뒤영벌을 이용한 사과수분의 비용 비교 (10a당)

<table>
<thead>
<tr>
<th>인공수분</th>
<th>화분매개곤충</th>
<th>뒤영벌</th>
</tr>
</thead>
<tbody>
<tr>
<td>국내산 840,000원</td>
<td>중국산 740,000원</td>
<td>60,000원</td>
</tr>
</tbody>
</table>

1) 인공수분
 - 국내산 꽃가루: 20,000원/5g, 석송자 2,500원/20g, 인건비 61,500원 = 84,000원
 - 중국산 꽃가루: 10,000원/5g, 석송자 2,500원/20g, 인건비 61,500원 = 74,000원
2) 화분매개곤충 뒤영벌 : 60,000원/ 1봉군

4. 뒤영벌봉군에 의한 사과수분법 현장기술 적용

사과인정 생산을 위한 뒤영벌을 이용한 수분법을 위하여, 이상기온 시 뒤영벌 일벌을 이용한 봉군의 활용 유지방법, 뒤영벌 봉군의 현장 설치방법 및 사후 관리법 등을 교육내용으로 현장기술 적용을 하였다. 그 결과, 그림 1에서 보는 바와 같이 청송, 포천, 밀양, 영주, 당진 등 5개 지역에서 사과재배 농가 등 총 515참석으로 현장 기술에 많은 관심과 호응을 보여주었다.
제 3절: 화분매개곤충 이용 농가 현황 및 사용량, 사용규모 등 화분매개곤충 이용실태 조사

사과작목에서 화분매개곤충 이용 농가 현장에서 화분매개곤충 이용실태 조사를 한 결과, 2011년도 우리나라 사과재배 총 농가수 및 재배면적은 38,288농가, 34,735.7ha이었다. 사과재배농가 중 14.8%(5,652농가)가 화분매개곤충을 사용하였고, 사과에 사용된 화분매개곤충의 사용량은 22,613봉군이었다. 사과에서 화분매개곤충으로 36.4%-41.2%가 꿀벌을 사용하였고, 29.4%~32.3%가 뒤영벌을, 29.4%~31.4%가 뿔가위벌을 이용하였다. 3,300㎡당 평균 꿀벌 사용량은 2.1±0.3봉군, 뒤영벌 3.7±0.3봉군, 뿔가위 벌류 사용량은 6.8±1.5봉군이었다. 사과 개화기에 뿔가위 봉군당 사용기간은 꿀벌 21.5±16.7일, 뒤영벌 21.7±17.4일, 뿔가위벌류 30.9±26.7일이었다. 농가당 평균 화분매개곤충 사용량은 꿀벌 9.0±10.3봉군, 뒤영벌 9.1±5.3봉군, 뿔가위벌류 5.3±5.6봉군이었다. 사과에서 화분매개곤충의 이용효과에 대한 조사 결과, 만족 이상이 68.7%로 나타났으며 불만은 4.0%에 불과하였다. 화분매개곤충 이용 시 이점은 결실률 향상(30.7%)이, 문제점으로는 기상조건 불량시 화분매개곤충의 활동부족이 25.1%로 가장 많았다. 또한 93.3%가 앞으로 계속 화분매개곤충을 계속 사용하겠다하여 화분매개곤충에 사용에 대해서 상당히 긍정적인 반응을 보였다. 주로 시설과재류의 수정을 위해 사용되고 있는 서양뒤영벌을 사과 수정에 사용하기 위한 뒤영벌봉군을 개발하였다. 일벌수가 적은 뒤영벌봉군의 특성상 일벌수를 늘리기 위해서 정상봉군에 탄산가스 처리한 외래일벌을 보충한 결과, 정상적인 봉군발육과 화분매개곤충 활동을 하였다. 이 개발된 서양뒤영벌봉군과 머리뿔가위벌을 사과에 방사한 후 착과율과 수량을 비교한 결과, 서양뒤영벌 방사구의 착과율이 6.5%, 수량이 10.1%나 더 높은 것으로 나타났다. 따라서 사과 수분질을 위해서 서양뒤영벌을 사용한 경우에는 마취된 외래일벌을 보충하여 사용하는 것이 효율적인 방법이라고 생각된다. 특히 사과 개화기에 저온 및 악천 후 등 기상이 불량할 경우에는 더욱 효과적인 것으로 나타났다.

제 4절: 사과 ‘홍로’ 고온기 미세살수에 의한 상품성 향상

1. 연구방법 (재료 및 방법)

가. 사과원 일반 현황

본 시험은 2012년부터 2013년까지 충청북도 3개 군(보은군, 영동군, 괴산군)의 9개소 사과원에서 실시하였다. 시험재료는 사과 품종 ‘홍로’ 6년생 이상으로 하였다. 각 사과원의 현황 및 토양 화학성은 표 1 및 2와 같았고 기온은 표 3과 같았다.
나. 미세살수
2012년부터 2013년까지 6월 하순부터 8월 하순까지 열대야 예상일(18시 기준 28±1℃이상)에 18시 및 20시에 각 30분씩 3.5L를 미세살수하였다. 미세노즐은 7L/hr용 단구를 사용하였고 주당 1개씩 2줄을 설치하였다. 미세살수에 의한 수관의 온도변화는 온도 데이터 기록 로거(testo 175 T2, Testo Co. GER)로 측정하였다. 또한, 수체의 부위별 온도변화를 측정하기 위해 적외선 온도계(testo 876, Testo Co. GER)를 사용하였다.
다. 염화칼슘 엽면살포
2012년 6월 하순부터 7월 하순까지 사과원별로 식품첨가용 염화칼슘(A.I. 78%, OCI Co. KOR)을 0.3%로 희석하여 1회부터 5회까지 10일 간격으로 엽면살포하였다.
라. 광합성 효율, 과일특성 및 전분함량 분석
광합성 효율을 보기 위해 2013년 8월 초순 21시에 처리별로 3엽 9곳을 염료소항광측정기(Mini-PAM, Walz Co. GER)로 측정하였고 외부 광량은 조도계(Illuminance meter ANA-F12, 일본동경광전)로 측정하여 광단위 환산 프로그램(CAHO11 베타버전, 농촌진흥청)을 이용하였 다. 과일특성은 처리별로 60개씩 분석하였다. 당도는 굴절당도계(TR-100, Atago Co.)로 측정하였고 산도는 착즙액 5㎖를 증류수 20㎖에 희석하여 0.1N NaOH로 pH 8.3까지의 적정치를 말산으로 환산하였다. 전분함량은 Megazyme사의 Total starch assay kit(AOAC Method 996.11)을 이용하여 분석하였다. 밀증상을 포함한 기타 조사는 농촌진흥청 농업과학기술 연구조사분석기준(2012)에 의하여 수행하였고 밀증상 발생 지수에 대한 상대적인 발생률은 구간 차이를 계급화 시켰다(참고 1).
표 1. 시험 과원 현황

<table>
<thead>
<tr>
<th>과원 ID</th>
<th>지역</th>
<th>고도(m)</th>
<th>수령(년)</th>
<th>경사도</th>
<th>재식방향</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>보은 삼승</td>
<td>154</td>
<td>9</td>
<td>평지</td>
<td>남북</td>
</tr>
<tr>
<td>B</td>
<td>보은 삼승</td>
<td>149</td>
<td>11</td>
<td>평지</td>
<td>남서~북동</td>
</tr>
<tr>
<td>C</td>
<td>영동 양산</td>
<td>199</td>
<td>11</td>
<td>서향(7~15%)</td>
<td>남북</td>
</tr>
<tr>
<td>D</td>
<td>괴산 장연</td>
<td>131</td>
<td>7</td>
<td>평지</td>
<td>남동~북서</td>
</tr>
<tr>
<td>E</td>
<td>괴산 장연</td>
<td>126</td>
<td>7</td>
<td>서향(7~15%)</td>
<td>남북</td>
</tr>
<tr>
<td>F</td>
<td>괴산 연풍</td>
<td>236</td>
<td>7</td>
<td>평지</td>
<td>남북</td>
</tr>
<tr>
<td>G</td>
<td>괴산 연풍</td>
<td>210</td>
<td>10</td>
<td>남향(2~7%)</td>
<td>동서</td>
</tr>
<tr>
<td>H</td>
<td>괴산 연풍</td>
<td>215</td>
<td>6</td>
<td>평지</td>
<td>남동~북서</td>
</tr>
<tr>
<td>I</td>
<td>괴산 연풍</td>
<td>306</td>
<td>6</td>
<td>북향(7~15%)</td>
<td>동서</td>
</tr>
</tbody>
</table>
표 2. 과원별 토양 화학성

<table>
<thead>
<tr>
<th>과원 ID</th>
<th>pH (1:5)</th>
<th>EC (dS/m)</th>
<th>OM (g/kg)</th>
<th>Av.P₂O₅ (mg/kg)</th>
<th>Ex. Cations (cmol/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7.2</td>
<td>0.0</td>
<td>32</td>
<td>201</td>
<td>0.25 4.6 21</td>
</tr>
<tr>
<td>B</td>
<td>5.3</td>
<td>1.2</td>
<td>24</td>
<td>731</td>
<td>0.61 5.3 0.7</td>
</tr>
<tr>
<td>C</td>
<td>4.1</td>
<td>1.2</td>
<td>11</td>
<td>326</td>
<td>0.57 2.7 0.8</td>
</tr>
<tr>
<td>D</td>
<td>5.7</td>
<td>0.0</td>
<td>31</td>
<td>317</td>
<td>0.52 5.9 3.3</td>
</tr>
<tr>
<td>E</td>
<td>6.5</td>
<td>0.0</td>
<td>27</td>
<td>252</td>
<td>0.53 1.6 7.6</td>
</tr>
<tr>
<td>F</td>
<td>7.7</td>
<td>0.0</td>
<td>41</td>
<td>244</td>
<td>0.54 3.3 9.6</td>
</tr>
<tr>
<td>G</td>
<td>7.0</td>
<td>0.0</td>
<td>14</td>
<td>258</td>
<td>0.68 5.9 3.4</td>
</tr>
<tr>
<td>H</td>
<td>6.7</td>
<td>0.0</td>
<td>38</td>
<td>447</td>
<td>0.81 9.5 1.1</td>
</tr>
<tr>
<td>I</td>
<td>6.8</td>
<td>0.0</td>
<td>38</td>
<td>447</td>
<td>0.81 9.5 1.1</td>
</tr>
</tbody>
</table>

표 3. 충북지역의 사과 ‘홍로’ 주산지의 생육기별 평균기온 및 평균 최고기온 (2012~2013)

<table>
<thead>
<tr>
<th>기상대</th>
<th>생육기별 평균기온 (°C)</th>
<th>생육기별 평균 최고기온 (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6월</td>
<td>7월</td>
</tr>
<tr>
<td>2013년</td>
<td>23.6</td>
<td>26.2</td>
</tr>
<tr>
<td>2012년</td>
<td>23.5</td>
<td>25.7</td>
</tr>
<tr>
<td>평년</td>
<td>21.7</td>
<td>24.7</td>
</tr>
<tr>
<td>평년대비</td>
<td>+1.8~+1.9</td>
<td>+1.0~+1.5</td>
</tr>
<tr>
<td>2013년</td>
<td>22.4</td>
<td>25.3</td>
</tr>
<tr>
<td>2012년</td>
<td>21.7</td>
<td>24.8</td>
</tr>
<tr>
<td>평년</td>
<td>20.8</td>
<td>23.8</td>
</tr>
<tr>
<td>평년대비</td>
<td>+1.5~+1.9</td>
<td>+0.6~+0.7</td>
</tr>
</tbody>
</table>

2. 연구결과

가. 미세살수에 따른 온도 저하와 ‘홍로’ 밀증상 경감 효과 구명

1) 미세살수 시간대의 사과 ‘홍로’ 수체 부위별 온도 분포

미세살수 시간대의 사과 ‘홍로’ 수체 부위별 온도 분포는 그림 1과 같다. 1차(18시) 미세살수 시점에 온도는 과일 주간 잎 순이었고, 과일의 최대 4°C 정도 차이가 있었다. 2차 (20시) 시점은 1차와 같은 순이었으나 차이의 2°C 정도였고 21시 이후에 각 부위 온도가 비슷하였다. 부분적인 미세살수로 각 부위별 특이, 과일 온도를 일 온도로 하강시키기에에는 부족하였고 과일 속 수분이 가지고 있는 비열과 표면 왁스층으로 인하여 외부와의 열 평형에 한계가 있었을 것이라 생각한다.

2) 미세살수 횟수 및 온도 하강
열대야 예상일에 미세살수 가동 횟수는 지역별과 사과원 위치에 따라 차이가 있었다. 충청북도 위도상으로는 괴산 보은 영동 순이나 미세살수 가동 횟수는 보은 괴산 영동 순이었고 평균 21.5~32.5회가 미세살수 되었다(표 4). 미세살수에 의한 수관부의 평균 온도하강은 최대 0.5℃(표 5)로 전체 과원을 미세살수 한다면 그 효과는 더욱 클 것으로 생각한다.
3) 미세살수에 의한 밀중상 경감 효과
미세살수를 한 과일은 대조구 대비 과중, 당도 및 산 함량에서는 차이가 없었다. 대조구의 밀중상 지수는 미세살수 처리구보다 0.2점도 높았고 경감 효과는 18.2%로 현저한 차이는 없었는데 부분적인 미세살수로 그 효과가 반감되었을 것이라 생각한다.

![미세살수에 따른 수체 부위별 온도 변화](image)

그림 1. 사과나무 미세살수에 따른 수체 부위별 온도 변화(2012. 7월 하순).
표 4. 연도별 및 월별 미세살수 평균 횟수(2012~2013)

<table>
<thead>
<tr>
<th>과원 소재지 및 연도</th>
<th>6월</th>
<th>7월</th>
<th>8월</th>
<th>계</th>
<th>평균</th>
</tr>
</thead>
<tbody>
<tr>
<td>보은군 2012</td>
<td>4</td>
<td>13</td>
<td>14.5</td>
<td>31.5</td>
<td>32.5</td>
</tr>
<tr>
<td>2013</td>
<td>3</td>
<td>13.5</td>
<td>17</td>
<td>33.5</td>
<td></td>
</tr>
<tr>
<td>영동군 2012</td>
<td>2</td>
<td>11</td>
<td>10</td>
<td>23</td>
<td>21.5</td>
</tr>
<tr>
<td>2013</td>
<td>1</td>
<td>6</td>
<td>13</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>괴산군 2012</td>
<td>2.7</td>
<td>10.8</td>
<td>10</td>
<td>23.5</td>
<td>22.5</td>
</tr>
<tr>
<td>2013</td>
<td>1</td>
<td>7.8</td>
<td>12.7</td>
<td>21.5</td>
<td></td>
</tr>
</tbody>
</table>

2 충북의 3개 군 조사지역 농가 평균임.

표 5. 미세살수 후, 평균기온 비교

<table>
<thead>
<tr>
<th>연도별 처리 구분</th>
<th>평균기온(°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6월</td>
</tr>
<tr>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>무처리(a)</td>
<td>-</td>
</tr>
<tr>
<td>미세살수(b)</td>
<td>-</td>
</tr>
<tr>
<td>평균온도차이(c)</td>
<td>(c=a-b)</td>
</tr>
<tr>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>무처리(a)</td>
<td>23.4</td>
</tr>
<tr>
<td>미세살수(b)</td>
<td>23.4</td>
</tr>
<tr>
<td>평균온도차이(c)</td>
<td>(c=a-b)</td>
</tr>
</tbody>
</table>

2 충북의 3개 군 조사지역 농가 평균임.

표 6. 미세살수에 의한 평균 밀증상 경감 효과(2012)

<table>
<thead>
<tr>
<th>처리</th>
<th>과중(g)</th>
<th>당도(°Brix)</th>
<th>산 함량(%)</th>
<th>밀증상 지수</th>
<th>발생률(%)</th>
<th>경감률(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>무처리(a)</td>
<td>342±14.5 a^2</td>
<td>14.6±0.29 a</td>
<td>0.2±0.01 a</td>
<td>1.6±0.08 a</td>
<td>22</td>
<td>18.2^3</td>
</tr>
<tr>
<td>미세살수(b)</td>
<td>326±11.7 a</td>
<td>14.3±0.29 a</td>
<td>0.2±0.01 a</td>
<td>1.4±0.10 a</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

1 자수: 0.0% 1.1%(미만), 3.1~5%(5.5~25%), 7.25~50%, 9.50~100%.
2 Mean±SE followed by the same letter are not significant using DMRT 5%.
3 경감 효과: 밀증상 발생률에 대한 (a-b)/a×100.

나. 염화칼슘 처리에 따른 밀증상 경감 효과 및 살포 적정 횟수 구명

식품첨가용 염화칼슘을 0.3%로 획득하여 농가별 1~5회 엽면살포 하였다. 과원 I는 무처리구의 밀증상 발생률이 2.2%로 염화칼슘 1회로 27.3% 경감 효과를 보였고(표 7) 2회 처리한 과원 E는 16.7%의 경감효과를 보였다(표 8). 3회 처리한 과원 A와 G의 밀증상 경감률은 각각 23.5와 14.3%였고 과원 간의 밀증상 발생 지수는 고도의 유의성이 있었지만 처리간에는 차
이가 없었다(표 9). 4회 처리한 과원 B, C, D, H의 과중, 당도, 산 함량은 과원간 차이는 있었으나 처리간 차이는 없었고 밀증상 지수는 과원간 및 처리간 고도로 유의성이 있었다. 또한 밀중상 경감률은 27.3~38.5%로 평균 32.5%이었다(표 10). 5회 처리한 과원 F도 54.6%의 경감률을 보였지만 유의성이 없었다(표 11).

표 7. 염화칼슘 1회 살포에 의한 밀중상 경감 효과(2012)

<table>
<thead>
<tr>
<th>과원별 처리</th>
<th>과중(g)</th>
<th>당도(°Brix)</th>
<th>산 함량(%)</th>
<th>밀중상</th>
<th>밀중상지수</th>
<th>밀중상발생률(%)</th>
<th>밀중상경감률(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>무처리</td>
<td>341±15.3 a</td>
<td>14.5±0.18 a</td>
<td>1.8±0.00 a</td>
<td>1.6±0.05 a</td>
<td>2.2</td>
<td>27.3</td>
<td></td>
</tr>
<tr>
<td>염화칼슘</td>
<td>319±7.5 a</td>
<td>14.2±0.15 a</td>
<td>1.6±0.01 b</td>
<td>1.3±0.15 a</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Each value represents the mean±SE. T-test, p<0.05

표 8. 염화칼슘 2회 살포에 의한 밀중상 경감 효과(2012)

<table>
<thead>
<tr>
<th>과원별 처리</th>
<th>과중(g)</th>
<th>당도(°Brix)</th>
<th>산 함량(%)</th>
<th>밀중상</th>
<th>밀중상지수</th>
<th>밀중상발생률(%)</th>
<th>밀중상경감률(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>무처리</td>
<td>270±9.3 a</td>
<td>15.5±0.21 a</td>
<td>1.8±0.01 a</td>
<td>1.7±0.05 a</td>
<td>24</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>염화칼슘</td>
<td>273±7.9 a</td>
<td>14.7±0.13 b</td>
<td>1.5±0.01 b</td>
<td>1.5±0.10 a</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Each value represents the mean±SE. T-test, p<0.05

표 9. 염화칼슘 3회 살포에 의한 밀중상 경감 효과(2012)

<table>
<thead>
<tr>
<th>과원별 처리</th>
<th>과중(g)</th>
<th>당도(°Brix)</th>
<th>산 함량(%)</th>
<th>밀중상</th>
<th>밀중상지수</th>
<th>밀중상발생률(%)</th>
<th>밀중상경감률(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>무처리</td>
<td>336±10.8</td>
<td>14.7±0.19</td>
<td>1.7±0.01</td>
<td>2.2±0.16</td>
<td>34</td>
<td>23.5</td>
<td></td>
</tr>
<tr>
<td>염화칼슘</td>
<td>344±8.1</td>
<td>13.9±0.16</td>
<td>1.9±0.00</td>
<td>1.8±0.05</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>무처리</td>
<td>350±6.3 a</td>
<td>13.3±0.27</td>
<td>1.9±0.00</td>
<td>1.4±0.05</td>
<td>1.8</td>
<td>14.3</td>
<td></td>
</tr>
<tr>
<td>염화칼슘</td>
<td>336±12.3</td>
<td>13.3±0.12</td>
<td>1.8±0.02</td>
<td>1.3±0.05</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Two-way ANOVA</th>
<th>F value</th>
</tr>
</thead>
<tbody>
<tr>
<td>과원(A)</td>
<td>0.05</td>
</tr>
<tr>
<td>처리(B)</td>
<td>0.07</td>
</tr>
<tr>
<td>A×B</td>
<td>-</td>
</tr>
</tbody>
</table>

2 Each value represents the mean±SE. *p<.05 **p<.01
표 10. 염화칼슘 4회 살포에 의한 밀증상 경감 효과 (2012)

<table>
<thead>
<tr>
<th>과원별 처리</th>
<th>과중 (g)</th>
<th>당도 (°Brix)</th>
<th>산 함량 (%)</th>
<th>밀증상 지수</th>
<th>발생률(%)</th>
<th>경감률(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>무처리</td>
<td>338±10.9</td>
<td>14.0±0.34</td>
<td>1.8±0.01</td>
<td>1.8±0.05</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>염화칼슘</td>
<td>330±8.4</td>
<td>13.6±0.18</td>
<td>1.4±0.00</td>
<td>1.3±0.05</td>
<td>1.6</td>
</tr>
<tr>
<td>C</td>
<td>무처리</td>
<td>319±7.3</td>
<td>13.3±0.21</td>
<td>1.5±0.03</td>
<td>1.4±0.10</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>염화칼슘</td>
<td>319±7.3</td>
<td>11.2±0.23</td>
<td>1.5±0.00</td>
<td>1.1±0.05</td>
<td>1.2</td>
</tr>
<tr>
<td>D</td>
<td>무처리</td>
<td>310±9.5</td>
<td>15.7±0.22</td>
<td>1.5±0.01</td>
<td>1.6±0.05</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>염화칼슘</td>
<td>289±7.8</td>
<td>15.6±0.20</td>
<td>1.5±0.01</td>
<td>1.3±0.05</td>
<td>1.6</td>
</tr>
<tr>
<td>H</td>
<td>무처리</td>
<td>411±14.2</td>
<td>15.0±0.15</td>
<td>1.8±0.02</td>
<td>1.8±0.00</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>염화칼슘</td>
<td>412±15.3</td>
<td>14.0±0.22</td>
<td>1.6±0.01</td>
<td>1.4±0.05</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Two-way ANOVA

<table>
<thead>
<tr>
<th>F value</th>
<th>과원(A)</th>
<th>처리(B)</th>
<th>A×B</th>
</tr>
</thead>
<tbody>
<tr>
<td>과원(A)</td>
<td>87.6**</td>
<td>836.9**</td>
<td>134.7**</td>
</tr>
<tr>
<td>처리(B)</td>
<td>1.77</td>
<td>1.9</td>
<td>1.1</td>
</tr>
<tr>
<td>A×B</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

각 값은 평균±표준오차를 의미하며, *p<.05, **p<.01

표 11. 염화칼슘 5회 살포에 의한 밀증상 경감 효과 (2012)

<table>
<thead>
<tr>
<th>과원별 처리</th>
<th>과중 (g)</th>
<th>당도 (°Brix)</th>
<th>산 함량 (%)</th>
<th>밀증상 지수</th>
<th>발생률(%)</th>
<th>경감률(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>무처리</td>
<td>402±8.3</td>
<td>15.1±0.10 a</td>
<td>1.5±0.01 a</td>
<td>1.6±0.12 a</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>염화칼슘</td>
<td>384±0.7</td>
<td>14.5±0.11 b</td>
<td>1.5±0.01 a</td>
<td>1.0±0.15 a</td>
<td>1.0</td>
</tr>
</tbody>
</table>

각 값은 평균±표준오차를 의미하며, T-test, p=0.05

다. 밀증상 경감을 위한 미세살수와 염화칼슘 병행처리 효과 구명

2013년에 처리별 엽색도와 엽록소 형광 측정에 의한 광자수율 차이가 없었다(표 12). 과일 특성 분석 결과 2012년보다 과중이 현저히 떨어졌고 처리간에는 차이가 없었다(표 13). 밀증상 조사 결과 대과일수록 밀증상이 많이 나온다는 보고(Park et al., 2009)처럼 과중이 300g 미만으로 밀증상 발생 지수는 2012년보다 현저히 낮았지만 처리간에는 차이가 있었다. 무처리와 미세살수 처리구는 차이가 없었지만 염화칼슘과 미세살수 및 염화칼슘 병행처리구와는 차이가 있었다(표 14). 밀증상이 발생한 정도를 비교해 보았을 때, 무처리구 대비 미세살수 처리구를 제외한 나머지 처리구는 차이가 있어 밀증상 피해가 덜 심하다는 결과를 얻었다. 또한, 지역간 차이도 이러한 결과와 유사하였고 미세살수와 염화칼슘 병행처리로 밀증상 피해 정도를
43.8% 경감시켰다(표 15). 밀증상 경감에 따른 전분함량 차이를 본 결과 2012년과 2013년 모두 차이가 없었다(표 16).

표 12. 처리별 엽색도 및 광자수율(2013)

<table>
<thead>
<tr>
<th>구분</th>
<th>엽색도(SPAD 값)</th>
<th>광자수율(Yield)</th>
<th>광합성효율광량자속 (µmol/m²/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>무처리</td>
<td>55.5±0.64 a²</td>
<td>0.84±0.002 a</td>
<td></td>
</tr>
<tr>
<td>미세살수</td>
<td>55.0±0.61 a</td>
<td>0.84±0.004 a</td>
<td><0.01</td>
</tr>
<tr>
<td>염화칼슘</td>
<td>54.4±0.23 a</td>
<td>0.85±0.008 a</td>
<td></td>
</tr>
<tr>
<td>미세살수+염화칼슘</td>
<td>54.1±0.31 a</td>
<td>0.84±0.004 a</td>
<td></td>
</tr>
</tbody>
</table>

^aDAMT, 5%

표 13. 처리별 과일 특성(2013)

<table>
<thead>
<tr>
<th>처리</th>
<th>과중(g)</th>
<th>경도(kg/8mmØ)</th>
<th>당도(°Brix)</th>
<th>산도(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>무처리</td>
<td>262.0±4.66 a²</td>
<td>6.1±0.19 a</td>
<td>14.7±0.33 a</td>
<td>1.4±0.06 a</td>
</tr>
<tr>
<td>미세살수</td>
<td>264.4±5.11 a</td>
<td>6.0±0.13 a</td>
<td>14.5±0.22 a</td>
<td>1.4±0.06 a</td>
</tr>
<tr>
<td>염화칼슘</td>
<td>258.4±4.87 a</td>
<td>6.1±0.23 a</td>
<td>14.3±0.21 a</td>
<td>1.4±0.05 a</td>
</tr>
<tr>
<td>미세살수+염화칼슘</td>
<td>260.9±3.01 a</td>
<td>6.3±0.12 a</td>
<td>14.2±0.19 a</td>
<td>1.4±0.06 a</td>
</tr>
</tbody>
</table>

^aDAMT, 5%

표 14. 처리별 밀증상 발생율 및 경감 효과(2013)

<table>
<thead>
<tr>
<th>처리</th>
<th>밀증상 지수</th>
<th>밀증상 발생률(%)</th>
<th>경감률(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>무처리</td>
<td>0.6±0.08 a²</td>
<td>0.6</td>
<td>-</td>
</tr>
<tr>
<td>미세살수</td>
<td>0.4±0.09 ab</td>
<td>0.4</td>
<td>33.3</td>
</tr>
<tr>
<td>염화칼슘</td>
<td>0.2±0.04 c</td>
<td>0.2</td>
<td>66.7</td>
</tr>
<tr>
<td>미세살수+염화칼슘</td>
<td>0.2±0.07 bc</td>
<td>0.2</td>
<td>66.7</td>
</tr>
</tbody>
</table>

^a수치는 밀증상 평균지수±표준오차로 0: 밀증상 무발생, 1: 1% 이하, 3: 1~5% 이하, 5: 5~25% 이하, 7: 25~50% 이하, 9: 50~100% 이하.
표 15. 처리별 발생한 밀증상의 피해 정도에 따른 경감 효과(2013)

<table>
<thead>
<tr>
<th>처리</th>
<th>지역(농가수)</th>
<th>밀증상 경감률(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>계</td>
<td>보은군(2)</td>
</tr>
<tr>
<td>무처리(a)</td>
<td>3.2±0.24 a†</td>
<td>2.3±0.04</td>
</tr>
<tr>
<td>미세살수(b)</td>
<td>2.7±0.26 ab</td>
<td>2.0±0.00</td>
</tr>
<tr>
<td>염화칼슘</td>
<td>2.1±0.14 bc</td>
<td>1.9±0.17</td>
</tr>
<tr>
<td>미세살수+염화칼슘</td>
<td>1.8±0.23 c</td>
<td>1.0±0.00</td>
</tr>
</tbody>
</table>

† DMRT, 5%
§ 밀증상 경감률 : (a-b)/a×100.

표 16. 신초 및 결과지 전분함량(2012∼2013)

<table>
<thead>
<tr>
<th>연도</th>
<th>무처리</th>
<th>미세살수</th>
<th>염화칼슘</th>
<th>미세살수+염화칼슘</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>6.4±0.48 a†</td>
<td>6.5±0.50 a</td>
<td>6.0±0.46 a</td>
<td>-</td>
</tr>
<tr>
<td>2013</td>
<td>7.2±0.14 a</td>
<td>7.3±0.17 a</td>
<td>7.1±0.17 a</td>
<td>7.0±0.18 a</td>
</tr>
</tbody>
</table>

† DMRT, 5%

3. 결과 요약
가. 6월 하순부터 8월 하순까지 충북 사과 ‘홍로’ 시험연구 재배지(3개 군, 9개소)의 미세살수 횟수는 지역별 22~33회로 차이가 있었고 평균 26회 살수되었음(2012∼2013).
나. 미세살수에 의한 수체 부위별(과일, 주간 등) 온도하강 효과는 미비하였으나 수관의 온도는 최대 0.5℃ 하강되었음.
다. 미세살수에 의한 밀증상 발생률의 경감률은 18.2%이었음(2012).
라. 염화칼슘 0.3% 희석액의 적정 엽면살포 횟수는 4회로 밀증상을 32.5% 경감시켰음(2012).
마. 2013년 미세살수, 염화칼슘 4회 및 미세살수와 염화칼슘 4회 병행처리의 밀증상 발생률에 대한 경감률은 무처리 대비 각각 33.3%, 66.7% 및 66.7%이었으나 과일생육 부진으로 밀증상 발생률이 2012년에 비해 적었음.
바. 2013년 처리별 발생한 밀증상에 대해 피해 정도를 분석한 결과 미세살수, 염화칼슘 4회 및 미세살수와 염화칼슘 4회 병행처리에서 각각 15.6, 34.4, 43.8% 경감률을 보였음.
사. 2012∼2013년 모두 처리별 신초 및 결과지의 전분함량 차이는 유의성이 없었음.

제 5절 : 사과 신품종(홍로, 감홍) 안정생산 및 품질 향상기술 적용 및 효과 조사
1. 재료 및 방법
가. 시험 장소 및 농가 현황
사과 신품종(홍로, 감홍) 안정생산 및 품질 향상기술 적용 및 효과 조사를 위하여 경북 영주시 ‘홍로’, ‘감홍’ 재배농가를 대상으로 5농가 7개소를 선정하여 ‘홍로’ 사과원 4개소와 ‘감홍’ 사과원 3개소에 2012년부터 2013년까지 2년간 수행하였으며, M.9인 해성대목을 사용한 수령 10 ~ 15년생인 사과나무 3주씩 조사하였다. 병해충 방제 및 재배 관리는 농가 관행적으로 수행하였다.

표1. 사과 신품종(홍로, 감홍) 안정생산 및 품질향상 기술 적용 시험포장 현황(2013년)

<table>
<thead>
<tr>
<th>연번</th>
<th>장 소</th>
<th>면적 (ha)</th>
<th>10a당 식재 주수</th>
<th>수령 (년)</th>
<th>해발고도 (m)</th>
<th>시험품종</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>봉현면 대촌리 430</td>
<td>0.4</td>
<td>180</td>
<td>15</td>
<td>150</td>
<td>감홍, 홍로</td>
</tr>
<tr>
<td>2</td>
<td>풍기읍 백2리 642-2</td>
<td>0.5</td>
<td>90</td>
<td>15</td>
<td>200</td>
<td>홍로</td>
</tr>
<tr>
<td>3</td>
<td>봉현면 유전리 46, 104</td>
<td>0.5</td>
<td>280</td>
<td>11</td>
<td>400</td>
<td>감홍, 홍로</td>
</tr>
<tr>
<td>4</td>
<td>부석면 우곡리 산 4</td>
<td>0.2</td>
<td>120</td>
<td>16</td>
<td>250</td>
<td>감홍</td>
</tr>
<tr>
<td>5</td>
<td>부석면 감곡리 320-3</td>
<td>0.3</td>
<td>100</td>
<td>11</td>
<td>180</td>
<td>홍로</td>
</tr>
</tbody>
</table>

나. 과실특성 조사 및 토양 분석
과실특성조사는 수확기에 각각의 처리구에서 3나무를 선정하여 주당 20개씩 눈높이의 과실을 무작위 수확하여 10개씩 조사하였다. 당도, 산도는 과일 당산도측정기(GMK-706R, Korea)를 이용하여 조사하였고, 경도는 과일 경도계(FT-327, Ø 8mm, Italy)로 과실의 적도면에 과피를 얇게 벗겨낸 후 과육의 경도를 측정하였다. 착색도는 육안검정으로 조사하고, 고두병은 처리구당 전수조사하여 발생정도를 나타내었다. 각 실험포장 토양 분석은 연 1회 채취하여 영주시농업기술센터에서 분석하였으며 대목노출 정도는 지면으로부터 접목부의 높이를 재고, 주간직경은 접목부위로부터 10cm 높이의 나무 굵기를 측정하였다. 칼슘은 식품첨가용 0.4% 엽화칼슘을 엽면시비하였다.

d. 시험수행 내용 및 방법
(1) 홍로, 감홍 품종의 수세에 따른 과실 폼질 조사를 위하여 나무 전체의 수관상태, 도장지발생 및 착과상태를 육안으로 판단하여 수세 약, 중, 강의 3가지로 분류하여 수세에 따른 과실품질을 조사하였다. 주요조사항목은 과실특성조사, 과목노출 높이, 동록발생, 고두병발생 정도를 조사하였다.
(2) 홍로 품종의 무대-유대 처리에 따른 과실 폼질 조사를 위하여 백색풀봉지를 2012년 6월 9일에 씌웠다가 8월 21일 벗기기 작업을 실시하였다. 유대, 무대처리에 따른 과실품질을 조사하고 작업 노동시간과 투입비용을 산출하여 경제성분석을 하였다.
(3) 봉지종류와 결합처리에 따른 감홍 과실품질과 고두병 발생을 조사를 위하여 백색-tooltip 지와 일반이중봉지, 결합이중봉지, 일반이중봉지에 결합 4회, 결합 이중봉지에 결합 2회 처리하여 과실특성조사와 동록, 고두병을 조사하였다. 결합은 봉지착우기 전후 실시하였다.
(4) 착과 위치 및 봉지종류에 따른 감홍 과실품질과 고두병 발생을 조사를 위하여 중심과
를 두고 일반이중봉지를 씌운 처리구, 중심과를 두고 칼슘이중봉지를 씌운 처리구, 측과를 두고 일반이중봉지를 씌운 처리구, 측과를 두고 칼슘이중봉지를 씌운 처리구를 두고 과실특성조사와 동록, 고두병을 조사하였다. 적과는 2012. 5. 20 실시하였고, 봉지는 5. 29 씌우고, 1차 봉지제거는 9. 27, 2차 봉지제거는 9. 29 실시하였다. 처리구별 염화칼슘을 4회 처리하였다.

(5) 홍로 폼종의 수령과 토양 비옥도와 대목 노출과 직경에 따른 적정 착과량 조사를 위하여 과실 150개 내외로 착과시킨 나무의 대목노출정도 0, 10, 20cm에 따른 과실특성조사, 사과원에 따른 노출정도와 착과수, 주간직경과의 관계를 조사하여 과실특성을 조사하였다.

(6) 홍로 폼종의 인산칼슘 처리에 따른 과실 품질 조사를 위하여 2013년 6월 15일에 0.3% 인산칼슘을 1회 엽면처리하여 과실특성을 조사하였다.

(7) 홍로, 감홍 폼종의 무대·유대 처리에 따른 과실 품질 조사를 위하여 홍로폼종은 백색혼봉지를 유무에 따른 과실특성을 조사하였고, 2013. 6. 15 봉지처리, 8. 21 봉지제거하였다. 병발생과 노린재 피해품질은 적정조사를하였다. 감홍폼종은 사과원에 따라 무대, 백색혼봉지, 일반이중봉지를 씌워 과실특성, 동록과 고두병 발생정도를 조사하였다.

(8) 해발고도에 따른 감홍 폼종의 동록 발생율 조사를 위하여 감홍 사과원이 위치해 있는 곳의 해발고도와 동록발생 정도를 조사하였다.

(9) 감홍 고두병과 칼슘처리 효과 조사를 위하여 염화칼슘 0.4% 4회 처리(5. 20, 5. 29, 9. 10, 9. 29)하여 과실 품질과 고두병을 조사하였다.

2. 연구결과

홍로 폼종의 수세(대목노출, 착과량)에 따른 과실 품질 조사
토양 유기물 함량이 적정범위(25 ~ 35g/kg)보다 많은 44g/kg의 홍로 사과원에서 대목 노출이 25cm인 때 착과수는 174개로 과중 361.96g으로 가장 우수하게 나타나 비옥한 토양에서는 대목노출이 20cm 이상 되어도 과실품질에 크게 영향을 미치지 않는 것으로 나타났다.

표 2. 홍로 폼종의 대목노출에 따른 과실 품질

<table>
<thead>
<tr>
<th>노출정도</th>
<th>착과수 (개)</th>
<th>주간직경 (cm)</th>
<th>L/D율</th>
<th>과중 (g)</th>
<th>당도 (Brix)</th>
<th>산도 (%)</th>
<th>경도 (kg/8mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0cm</td>
<td>169</td>
<td>8.51</td>
<td>1.04</td>
<td>348.21</td>
<td>12.78</td>
<td>0.20</td>
<td>3.44</td>
</tr>
<tr>
<td>15cm</td>
<td>155</td>
<td>9.24</td>
<td>1.00</td>
<td>327.90</td>
<td>12.90</td>
<td>0.23</td>
<td>3.78</td>
</tr>
<tr>
<td>25cm</td>
<td>174</td>
<td>8.60</td>
<td>1.01</td>
<td>361.96</td>
<td>12.69</td>
<td>0.22</td>
<td>3.4</td>
</tr>
</tbody>
</table>

1) 조사지: 영주시 풍기읍, 14년생 홍로/M9, 재식거리 3.5m × 3m
그림 1. 홍로 품종의 대목노출에 따른 과실 품질

홍로 품종에서 나무의 대목높이가 10~15cm이고, 주간 직경이 9cm 정도일 경우 착과량이 99개일 때 과중 417.08g, 당도 13.79Brix로 높게 나타나고, 착과량이 235개일 때 과중 354.47g, 당도 12.53Brix로 착과량이 많으면 과중, 당도가 감소한다.

표 3. 홍로 품종의 착과량에 따른 과실 품질

<table>
<thead>
<tr>
<th>착과량 (개)</th>
<th>대목높이 (cm)</th>
<th>나무직경 (cm)</th>
<th>L/D율</th>
<th>과중 (g)</th>
<th>당도 (Brix)</th>
<th>산도 (%)</th>
<th>경도 (kg/8mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>15</td>
<td>9.07</td>
<td>1.00</td>
<td>417.08</td>
<td>13.79</td>
<td>0.271</td>
<td>3.35</td>
</tr>
<tr>
<td>155</td>
<td>15</td>
<td>9.24</td>
<td>1.00</td>
<td>327.9</td>
<td>12.9</td>
<td>0.23</td>
<td>3.78</td>
</tr>
<tr>
<td>235</td>
<td>10</td>
<td>9.61</td>
<td>0.98</td>
<td>354.47</td>
<td>12.53</td>
<td>0.1911</td>
<td>3.44</td>
</tr>
</tbody>
</table>

1) 조사지 : 영주시 풍기읍, 14년생 홍로/M9, 재식거리 3.5m × 3m
2) 토양 10cm 유기물 함량 : 44g/kg으로 적정범위(25~35g/kg)보다 많음
표 4에서 수세가 강해질수록 고두병 발생율이 25%까지 높게 나타날 수 있다.

표 4. 수세에 따른 감홍 과실 품질 및 고두병 발생율 비교

<table>
<thead>
<tr>
<th>구분</th>
<th>L/D율</th>
<th>과중 (g)</th>
<th>당도 (Brix)</th>
<th>산도 (%)</th>
<th>경도 (kg/8㎜)</th>
<th>착색도 (%)</th>
<th>동녹 (%)</th>
<th>고두병 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>사과원 1</td>
<td>수세약</td>
<td>0.99</td>
<td>339.9</td>
<td>12.93</td>
<td>0.25</td>
<td>3.10</td>
<td>83.3</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>수세중</td>
<td>0.97</td>
<td>369.4</td>
<td>13.62</td>
<td>0.32</td>
<td>2.97</td>
<td>90.8</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>수세강</td>
<td>0.99</td>
<td>350.15</td>
<td>13.79</td>
<td>0.256</td>
<td>3.57</td>
<td>83.0</td>
<td>6.2</td>
</tr>
<tr>
<td>사과원 2</td>
<td>수세약</td>
<td>0.97</td>
<td>326.6</td>
<td>13.27</td>
<td>0.27</td>
<td>3.21</td>
<td>87.0</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>수세중</td>
<td>1.03</td>
<td>370.8</td>
<td>14.81</td>
<td>0.23</td>
<td>3.31</td>
<td>73.5</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>수세강</td>
<td>1.06</td>
<td>379.1</td>
<td>13.82</td>
<td>0.21</td>
<td>2.94</td>
<td>74</td>
<td>6.8</td>
</tr>
</tbody>
</table>

1) 사과원 1: 영주시 부석면, 15년생 감홍/M9, 재식거리 4m × 2m
2) 사과원 2: 영주시 봉현면, 14년생 감홍/M9, 재식거리 4m × 2m
그림 3. 수세에 따른 감홍 과실 품질 비교

홍로 품종의 무대·유대 처리에 의한 과실 품질 조사
홍로품종에서 유대처리보다 무대처리 과실에서 과중, 당도, 착색도가 높게 나타나고, 산도, 경도가 낮게 나타났다. 유대재배시 무대재배에 비하여 10a당 64.8시간의 노동시간과 692천원의 비용이 발생되어 무대재배가 과실품질도 높고 노동시간과 생산비용이 절감되어 경제적이다.

표 5. 홍로품종 무대처리와 유대처리 과실 품질 비교

<table>
<thead>
<tr>
<th>구분</th>
<th>L/D율</th>
<th>과중 (g)</th>
<th>당도 (Brix)</th>
<th>산도 (%)</th>
<th>경도 (kg/8mm)</th>
<th>착색도 (%)</th>
<th>병과율 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>무대1</td>
<td>0.97</td>
<td>334.8</td>
<td>13.1</td>
<td>0.30</td>
<td>2.8</td>
<td>75.7</td>
<td>1.2</td>
</tr>
<tr>
<td>무대2</td>
<td>0.98</td>
<td>348.8</td>
<td>15.0</td>
<td>0.39</td>
<td>3.2</td>
<td>97.9</td>
<td>1.0</td>
</tr>
<tr>
<td>유대1</td>
<td>0.96</td>
<td>316.7</td>
<td>13.2</td>
<td>0.56</td>
<td>3.3</td>
<td>64.5</td>
<td>1.1</td>
</tr>
<tr>
<td>유대2</td>
<td>0.88</td>
<td>280.7</td>
<td>11.8</td>
<td>0.51</td>
<td>3.5</td>
<td>64.5</td>
<td>1.2</td>
</tr>
</tbody>
</table>

1) 조사지
- 무대1: 영주시 봉기읍, 14년생 홍로/M9, 재식거리 3.5m × 3m
- 무대2: 영주시 봉현면, 10년생 홍로/M9, 재식거리 3.5m × 1.5m
- 유대1: 영주시 봉현면, 10년생 홍로/M9, 재식거리 3.5m × 1.5m
- 유대2: 영주시 부석면, 10년생 홍로/M9, 재식거리 3.5m × 1.5m
봉지 종류와 칼슘처리에 따른 감홍 과실품질과 고두병 발생율

표 6에서 사과원 1, 2의 봉지처리, 무처리간에는 무처리가 당도가 높고, 동녹 발생률이 높으며, 고두병 발생율이 낮고 봉지처리간에는 유의성이 없었다. 칼슘을 처리하였을 때 무처리에 비해 고두병을 현저히 줄이고 칼슘병증봉지와 칼슘처리를 병행할 경우 고두병이 더욱 낮아지는 경향이 있었다.

따라서 당도를 높이고 고두병 발생율을 줄이고자 한다면 봉지를 씌우지 않고 칼슘을 처리하고, 동녹과 고두병 발생율을 줄이고자 한다면 백색혈봉지와 칼슘처리를 병행하면 효과적이다.
표 6. 봉지 종류 및 칼슘처리에 따른 감홍 과실 품질 및 고두병 발생율 비교

<table>
<thead>
<tr>
<th>구분</th>
<th>L/D율</th>
<th>과중 (g)</th>
<th>당도 (Brix)</th>
<th>산도 (%)</th>
<th>경도 (kg/8m)</th>
<th>착색도 (%)</th>
<th>동녹 (%)</th>
<th>고두병 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>사과원 1: 무처리</td>
<td>0.92</td>
<td>306.2</td>
<td>15.5</td>
<td>0.27</td>
<td>3.23</td>
<td>87.0</td>
<td>17.5</td>
<td>11.6</td>
</tr>
<tr>
<td>백색 홑봉지</td>
<td>0.97</td>
<td>326.8</td>
<td>13.3</td>
<td>0.20</td>
<td>3.21</td>
<td>87.5</td>
<td>5.7</td>
<td>15.4</td>
</tr>
<tr>
<td>일반 이중봉지</td>
<td>0.96</td>
<td>351.6</td>
<td>13.9</td>
<td>0.27</td>
<td>3.39</td>
<td>86.3</td>
<td>8.5</td>
<td>21.7</td>
</tr>
<tr>
<td>칼슘 이중봉지</td>
<td>0.94</td>
<td>321.1</td>
<td>15.2</td>
<td>0.37</td>
<td>3.71</td>
<td>89.5</td>
<td>13.5</td>
<td>2.3</td>
</tr>
<tr>
<td>사과원 2: 무처리</td>
<td>1.02</td>
<td>352.0</td>
<td>17.4</td>
<td>0.37</td>
<td>3.32</td>
<td>82.3</td>
<td>15.0</td>
<td>10.0</td>
</tr>
<tr>
<td>백색 홑봉지</td>
<td>1.03</td>
<td>390.2</td>
<td>15.8</td>
<td>0.31</td>
<td>2.97</td>
<td>89.5</td>
<td>8.5</td>
<td>20.0</td>
</tr>
<tr>
<td>일반 이중봉지</td>
<td>1.05</td>
<td>361.7</td>
<td>14.4</td>
<td>0.26</td>
<td>2.87</td>
<td>77.0</td>
<td>5.0</td>
<td>15.0</td>
</tr>
<tr>
<td>칼슘 이중봉지</td>
<td>0.99</td>
<td>378.3</td>
<td>13.0</td>
<td>0.28</td>
<td>2.85</td>
<td>73.0</td>
<td>7.5</td>
<td>20.0</td>
</tr>
<tr>
<td>일반이중봉지+칼슘</td>
<td>1.03</td>
<td>370.8</td>
<td>14.8</td>
<td>0.23</td>
<td>3.31</td>
<td>73.5</td>
<td>10.2</td>
<td>5.0</td>
</tr>
</tbody>
</table>

1) 사과원 1: 영주시 부석면, 15년생 감홍/M9, 재식거리 4m × 2m, 칼슘 2회 엽면시비
2) 사과원 2: 영주시 봉현면, 14년생 감홍/M9, 재식거리 4m × 2m, 칼슘 4회 엽면시비

착과 위치 및 봉지 종류에 따른 감홍 과실품질과 고두병 발생율

표 7에서 착과 위치에 따라 착과의 경우 중심과에 비해 과중은 낮으나 고두병 발생율이 3.6%, 1.6%로 현저히 낮았다. 봉지종류에 따른 고두병 발생율은 유의성이 없으나 칼슘이중봉지가 다소 고두병 발생율이 낮아 고두병 감소를 위해서는 착과를 착과시키고 칼슘이중봉지를 써 우면 효과적이다.

표 7. 착과위치 및 봉지종류에 따른 감홍 과실 품질 및 고두병 발생율 비교

<table>
<thead>
<tr>
<th>구분</th>
<th>L/D율</th>
<th>과중 (g)</th>
<th>당도 (Brix)</th>
<th>산도 (%)</th>
<th>경도 (kg/8m)</th>
<th>착색도 (%)</th>
<th>동녹 (%)</th>
<th>고두병 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>중심과 + 일반 이중봉지</td>
<td>0.98</td>
<td>393.05</td>
<td>12.6</td>
<td>0.247</td>
<td>3.02</td>
<td>97.4</td>
<td>0</td>
<td>10.6</td>
</tr>
<tr>
<td>중심과 + 칼슘 이중봉지</td>
<td>0.97</td>
<td>388.7</td>
<td>12.05</td>
<td>0.469</td>
<td>2.8</td>
<td>94.6</td>
<td>1.6</td>
<td>10.6</td>
</tr>
<tr>
<td>측과 + 일반 이중봉지</td>
<td>0.96</td>
<td>301.25</td>
<td>13.56</td>
<td>0.285</td>
<td>3.08</td>
<td>83.0</td>
<td>2.5</td>
<td>3.6</td>
</tr>
<tr>
<td>측과 + 칼슘 이중봉지</td>
<td>1.03</td>
<td>331.2</td>
<td>13.46</td>
<td>0.258</td>
<td>3.09</td>
<td>94.8</td>
<td>1.3</td>
<td>1.6</td>
</tr>
</tbody>
</table>

1) 조사지 : 영주시 봉현면, 10년생 감홍/M9, 재식거리 3.5m × 1.5m.
표 8. 사과 신종종(홍로, 감홍) 안정생산 및 품질향상 기술 농가 만족도 조사 결과 : 90점

<table>
<thead>
<tr>
<th>농가명</th>
<th>평가 항목</th>
<th>적시성</th>
<th>혁신성</th>
<th>실용성</th>
<th>파급성</th>
<th>합계</th>
</tr>
</thead>
<tbody>
<tr>
<td>손기호</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>박종술</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>이창희</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>장진선</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>정건영</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>평균</td>
<td>21</td>
<td>21</td>
<td>25</td>
<td>23</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

그림 7. 착과위치 및 봉지 종류에 따른 감홍 과실 품질

2012년 사과 신종종 안정생산 및 품질향상 기술 농가 만족도 설문 조사 결과 90점으로 나타났고(표 8), 농가별 소득향상을은 31.9%로 나타났다(그림 8).
그림 8. 농가별 소득향상을 조사 결과 : 31.9% 향상

홍로 품종의 수령과 토양 비옥도와 대목 노출과 직경에 따른 적정 착과량

15년생 홍로 품종에서 주당 150개 정도 자르기고 대목 노출은 10cm일 때 과중은 299.66g, 당도 12.84Brix로 과실품질이 가장 우수하게 나타났다.

표 9. 홍로 품종의 대목노출에 따른 과실 품질

<table>
<thead>
<tr>
<th>노출정도</th>
<th>착과수 (개)</th>
<th>주간직경 (cm)</th>
<th>L/D율</th>
<th>과중 (g)</th>
<th>당도 (Brix)</th>
<th>산도 (%)</th>
<th>경도 (kg/8mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0cm</td>
<td>150</td>
<td>9.46</td>
<td>0.95</td>
<td>266.12</td>
<td>12.14</td>
<td>0.29</td>
<td>7.42</td>
</tr>
<tr>
<td>10cm</td>
<td>157</td>
<td>8.33</td>
<td>0.90</td>
<td>299.66</td>
<td>12.84</td>
<td>0.31</td>
<td>7.37</td>
</tr>
<tr>
<td>20cm</td>
<td>153</td>
<td>7.88</td>
<td>0.89</td>
<td>225.68</td>
<td>12.78</td>
<td>0.32</td>
<td>7.42</td>
</tr>
</tbody>
</table>

1) 조사지 : 영주시 풍기읍, 15년생 홍로/M9, 재식거리 3.5m × 3m
그림 9. 홍로 품종의 대목노출에 따른 과실 품질

표 10에서 홍로품종의 유기물을 함량이 적정수준(25~35g/kg)보다 많은 사과원1의 경우 대목노출정도는 3.9 ~ 14.8cm이고, 착과수는 165 ~ 243개였다. 유기물 함량이 적정수준보다 적은 사과원2의 경우 대목노출정도는 -5 ~ 8.8cm이고, 착과수는 160 ~ 234개로 유기물함량과 대목노출정도는 정의 상관관계에 있음을 알 수 있다.

표 10. 홍로 품종의 대목노출과 주간직경, 토양비옥도에 따른 적정착과량

<table>
<thead>
<tr>
<th>구분</th>
<th>노출정도(cm)</th>
<th>착과수 (개)</th>
<th>주간직경(cm)</th>
<th>L/D율</th>
<th>과중 (g)</th>
<th>당도 (Brix)</th>
<th>산도 (%)</th>
<th>경도 (kg/8mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>사과원1</td>
<td>3.9</td>
<td>223</td>
<td>8.74</td>
<td>0.96</td>
<td>228.04</td>
<td>12.97</td>
<td>0.33</td>
<td>8.06</td>
</tr>
<tr>
<td></td>
<td>5.8</td>
<td>165</td>
<td>8.5</td>
<td>0.94</td>
<td>272.12</td>
<td>12.72</td>
<td>0.31</td>
<td>7.80</td>
</tr>
<tr>
<td></td>
<td>8.8</td>
<td>243</td>
<td>10.5</td>
<td>0.92</td>
<td>230.90</td>
<td>12.48</td>
<td>0.35</td>
<td>7.46</td>
</tr>
<tr>
<td></td>
<td>11.5</td>
<td>224</td>
<td>9.67</td>
<td>0.92</td>
<td>267.42</td>
<td>12.47</td>
<td>0.32</td>
<td>7.40</td>
</tr>
<tr>
<td></td>
<td>14.8</td>
<td>196</td>
<td>9.10</td>
<td>0.92</td>
<td>246.93</td>
<td>12.24</td>
<td>0.33</td>
<td>7.42</td>
</tr>
<tr>
<td></td>
<td>-5</td>
<td>234</td>
<td>12.2</td>
<td>0.89</td>
<td>275.25</td>
<td>11.87</td>
<td>0.26</td>
<td>6.93</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>160</td>
<td>10.5</td>
<td>0.87</td>
<td>304.78</td>
<td>12.65</td>
<td>0.28</td>
<td>6.96</td>
</tr>
<tr>
<td></td>
<td>3.7</td>
<td>168</td>
<td>10.7</td>
<td>0.89</td>
<td>275.21</td>
<td>11.45</td>
<td>0.27</td>
<td>7.04</td>
</tr>
<tr>
<td></td>
<td>6.7</td>
<td>157</td>
<td>9.8</td>
<td>0.90</td>
<td>266.83</td>
<td>11.67</td>
<td>0.27</td>
<td>6.96</td>
</tr>
<tr>
<td></td>
<td>8.8</td>
<td>194</td>
<td>9.9</td>
<td>0.86</td>
<td>290.44</td>
<td>11.43</td>
<td>0.28</td>
<td>7.40</td>
</tr>
</tbody>
</table>

1) 사과원1: 영주시 풍기읍, 15년생 홍로/M9, 재식거리 3.5m × 3m, 유기물 45g/kg
2) 사과원2: 영주시 봉현면, 11년생 홍로/M9, 재식거리 3.5m × 1.5m, 유기물 5g/kg
홍로 품종의 인산칼슘 처리에 따른 과실 품질 조사

표 11과 그림 10에서 인산칼슘을 처리하였을 경우 무처리에 비해 과중 30g, 당도 0.54Brix, 착색도 5.1% 증가함을 알 수 있다.

표 11. 홍로품종 인산칼슘처리에 따른 과실품질

<table>
<thead>
<tr>
<th>구분</th>
<th>L/D율 (로)</th>
<th>과중 (g)</th>
<th>당도 (Brix)</th>
<th>산도 (%)</th>
<th>경도 (kg/8mm)</th>
<th>착색도 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>무처리1</td>
<td>0.86</td>
<td>249.63</td>
<td>12.39</td>
<td>0.33</td>
<td>7.82</td>
<td>84.00</td>
</tr>
<tr>
<td>무처리2</td>
<td>0.88</td>
<td>265.55</td>
<td>12.32</td>
<td>0.32</td>
<td>7.33</td>
<td>75.00</td>
</tr>
<tr>
<td>무처리3</td>
<td>0.91</td>
<td>254.28</td>
<td>12.21</td>
<td>0.29</td>
<td>7.35</td>
<td>75.50</td>
</tr>
<tr>
<td>평균</td>
<td>0.88</td>
<td>256.49</td>
<td>12.31</td>
<td>0.31</td>
<td>7.63</td>
<td>78.17</td>
</tr>
<tr>
<td>인산칼슘 처리1</td>
<td>0.90</td>
<td>299.66</td>
<td>12.84</td>
<td>0.31</td>
<td>7.37</td>
<td>84.50</td>
</tr>
<tr>
<td>인산칼슘 처리2</td>
<td>0.90</td>
<td>315.78</td>
<td>12.96</td>
<td>0.30</td>
<td>7.33</td>
<td>86.80</td>
</tr>
<tr>
<td>인산칼슘 처리3</td>
<td>0.94</td>
<td>275.15</td>
<td>12.74</td>
<td>0.28</td>
<td>7.57</td>
<td>78.50</td>
</tr>
<tr>
<td>평균</td>
<td>0.91</td>
<td>296.86</td>
<td>12.85</td>
<td>0.30</td>
<td>7.42</td>
<td>83.27</td>
</tr>
</tbody>
</table>

1) 조사지 : 영주시 풍기읍, 14년생 홍로/M9, 재식거리 3.5m × 3m

그림 10. 인산칼슘 처리에 따른 홍로 과실 품질 비교
홍로, 감홍 품종의 무대·유대 처리에 따른 과실 품질 조사

표 12의 사과원 1과 2에서 1년차 결과와 다르게 홍로 유대처리 과실의 과중, 당도, 착색도, 산도가 높게 나타나고 경도는 낮게 나타났다. 또한 과실의 병해충 피해율이 낮게 나타났다.

표 12. 홍로품종 무대처리와 유대처리 과실 품질 비교

<table>
<thead>
<tr>
<th>구분</th>
<th>L/D율</th>
<th>과중 (g)</th>
<th>당도 (Brix)</th>
<th>산도 (%)</th>
<th>경도 (kg/8mm)</th>
<th>착색도 (%)</th>
<th>병과율 (%)</th>
<th>노린재 과율 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>사과원 1</td>
<td>무대</td>
<td>0.88</td>
<td>247.85</td>
<td>12.23</td>
<td>0.28</td>
<td>6.99</td>
<td>73.00</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>유대</td>
<td>0.87</td>
<td>268.63</td>
<td>12.45</td>
<td>0.29</td>
<td>6.92</td>
<td>75.67</td>
<td>-</td>
</tr>
<tr>
<td>사과원 2</td>
<td>무대</td>
<td>0.84</td>
<td>312.07</td>
<td>11.22</td>
<td>0.29</td>
<td>7.31</td>
<td>82.50</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>유대</td>
<td>0.84</td>
<td>326.37</td>
<td>12.58</td>
<td>0.38</td>
<td>7.25</td>
<td>86.15</td>
<td>1.5</td>
</tr>
<tr>
<td>사과원 3</td>
<td>무대</td>
<td>0.85</td>
<td>228.29</td>
<td>11.95</td>
<td>0.32</td>
<td>7.57</td>
<td>49.20</td>
<td>26.4</td>
</tr>
<tr>
<td></td>
<td>유대</td>
<td>0.85</td>
<td>299.62</td>
<td>11.74</td>
<td>0.37</td>
<td>6.79</td>
<td>76.50</td>
<td>12.2</td>
</tr>
</tbody>
</table>

1) 조사지
- 사과원 1: 영주시 봉현면, 15년생 홍로/M9, 재식거리 3.5m × 1.5m
- 사과원 2: 영주시 봉현면, 11년생 홍로/M9, 재식거리 3.5m × 1.5m
- 사과원 3: 영주시 부석면, 11년생 홍로/M9, 재식거리 3.5m × 1.5m

그림 11. 홍로품종 무대처리와 유대처리 과실 품질 비교

표 13에서 사과원 1, 3 모두 무대처리가 봉지씌우는 것보다 당도가 1Brix 이상 높고 착색도 더 잘 되었다. 동녹은 봉지를 씌울수록 낮아지나 감홍품종에 있어 소비자는 동녹보다 맛을 중시하는 경향이어서 유대처리보다 무대처리가 경제적인 면에서 효과적이다. 해발 150m의 사과
원2의 경우 착색이 일반이중봉지가 백색 BSD봉지보다 우수하여 이중봉지를 선호하는 경향으로 해발이 낮아 착색이 잘 안되는 곳은 일반이중봉지가 착색에 효과적이었다.

표 13. 봉지 종류에 따른 감홍 과실 품질 비교

<table>
<thead>
<tr>
<th>구분</th>
<th>L/D율</th>
<th>과중 (g)</th>
<th>당도 (Brix)</th>
<th>산도 (%)</th>
<th>경도 (kg/8m)</th>
<th>착색도 (%)</th>
<th>동녹 (%)</th>
<th>고두병 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>사과원 1</td>
<td>무대처리</td>
<td>0.90</td>
<td>350.0</td>
<td>14.5</td>
<td>0.3</td>
<td>6.0</td>
<td>74.7</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>백색 BSD봉지</td>
<td>0.95</td>
<td>339.39</td>
<td>13.02</td>
<td>0.267</td>
<td>5.75</td>
<td>69.0</td>
<td>1.5</td>
</tr>
<tr>
<td>사과원 2</td>
<td>백색 BSD봉지</td>
<td>0.96</td>
<td>334.11</td>
<td>12.66</td>
<td>0.23</td>
<td>5.56</td>
<td>68.90</td>
<td>8.67</td>
</tr>
<tr>
<td></td>
<td>일반이중봉지</td>
<td>1.00</td>
<td>356.4</td>
<td>12.9</td>
<td>0.2</td>
<td>5.4</td>
<td>81.0</td>
<td>8.0</td>
</tr>
<tr>
<td>사과원 3</td>
<td>무대처리</td>
<td>0.90</td>
<td>341.22</td>
<td>15.64</td>
<td>0.32</td>
<td>5.83</td>
<td>95.8</td>
<td>34.5</td>
</tr>
<tr>
<td></td>
<td>백색 BSD봉지</td>
<td>0.95</td>
<td>303.95</td>
<td>14.73</td>
<td>0.34</td>
<td>6.12</td>
<td>93.2</td>
<td>35.2</td>
</tr>
<tr>
<td></td>
<td>일반이중봉지</td>
<td>0.96</td>
<td>338.35</td>
<td>13.98</td>
<td>0.30</td>
<td>5.70</td>
<td>92.7</td>
<td>24.5</td>
</tr>
</tbody>
</table>

1) 조사지
- 사과원1: 영주시 봉현면, 11년생 감홍/M9, 재식거리 3.5m × 1.5m, 해발 400m
- 사과원2: 영주시 봉현면, 15년생 감홍/M9, 재식거리 4m × 2m, 해발 150m
- 사과원3: 영주시 부석면, 16년생 감홍/M9, 재식거리 4m × 2m, 해발 250m

그림 12. 봉지 종류에 따른 감홍 품종 과실 품질 비교
과원의 해발 고도에 따른 감홍 품종의 동녹 발생율
해발 고도가 400m 이상인 지역에서 감홍의 동녹은 4.0%로 현저히 낮게 나타났다.

표 14. 감홍 과원의 위치에 따른 동녹 발생율

<table>
<thead>
<tr>
<th>해발고도</th>
<th>L/D율</th>
<th>과중 (g)</th>
<th>당도 (Brix)</th>
<th>산도 (%)</th>
<th>경도 (kg/8m)</th>
<th>착색도 (%)</th>
<th>동녹 (%)</th>
<th>고두병 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400m</td>
<td>0.96</td>
<td>382.0</td>
<td>14.6</td>
<td>0.3</td>
<td>5.1</td>
<td>85.2</td>
<td>4.0</td>
<td>26.3</td>
</tr>
<tr>
<td>250m</td>
<td>0.90</td>
<td>341.22</td>
<td>15.64</td>
<td>0.32</td>
<td>5.83</td>
<td>95.83</td>
<td>34.50</td>
<td>15.4</td>
</tr>
<tr>
<td>150m</td>
<td>1.02</td>
<td>352.0</td>
<td>17.4</td>
<td>0.37</td>
<td>3.32</td>
<td>82.3</td>
<td>15.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>

1) 조사지:
 - 400m: 영주시 봉현면, 11년생 감홍/M9, 재식거리 3.5m × 1.5m
 - 250m: 영주시 부석면, 16년생 감홍/M9, 재식거리 4m × 2m
 - 150m: 영주시 봉현면, 14년생 감홍/M9, 재식거리 4m × 2m

감홍 고두병 감소를 위한 칼슘처리 효과
0.4% 염화칼슘을 4회 엽면처리하였을 경우 고두병 발생율이 무처리에 비하여 1/10로 줄어들고
동녹 발생율에는 효과가 없었다(표 15).

표 15. 감홍 염화칼슘처리에 따른 과실품질

<table>
<thead>
<tr>
<th>구분</th>
<th>L/D율</th>
<th>과중 (g)</th>
<th>당도 (Brix)</th>
<th>산도 (%)</th>
<th>경도 (kg/8m)</th>
<th>착색도 (%)</th>
<th>동녹 (%)</th>
<th>고두병 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>무처리1</td>
<td>0.96</td>
<td>352.88</td>
<td>13.5</td>
<td>0.285</td>
<td>5.33</td>
<td>80</td>
<td>4.5</td>
<td>48.5</td>
</tr>
<tr>
<td>무처리2</td>
<td>0.95</td>
<td>376.71</td>
<td>13.57</td>
<td>0.302</td>
<td>5.14</td>
<td>86.5</td>
<td>3</td>
<td>34.5</td>
</tr>
<tr>
<td>무처리3</td>
<td>0.97</td>
<td>416.48</td>
<td>16.62</td>
<td>0.34</td>
<td>4.92</td>
<td>89</td>
<td>4.5</td>
<td>35.5</td>
</tr>
<tr>
<td>평균</td>
<td>0.96</td>
<td>382.02</td>
<td>14.56</td>
<td>0.31</td>
<td>5.85</td>
<td>85.2</td>
<td>4.0</td>
<td>39.5</td>
</tr>
<tr>
<td>염화칼슘 처리1</td>
<td>0.97</td>
<td>350.6</td>
<td>14.2</td>
<td>0.25</td>
<td>5.53</td>
<td>70</td>
<td>7.5</td>
<td>4.0</td>
</tr>
<tr>
<td>염화칼슘 처리2</td>
<td>0.92</td>
<td>349.87</td>
<td>14.59</td>
<td>0.288</td>
<td>7.05</td>
<td>76.5</td>
<td>6.5</td>
<td>0.0</td>
</tr>
<tr>
<td>염화칼슘 처리3</td>
<td>0.93</td>
<td>349.58</td>
<td>14.82</td>
<td>0.317</td>
<td>5.56</td>
<td>77.5</td>
<td>5.5</td>
<td>7.3</td>
</tr>
<tr>
<td>평균</td>
<td>0.94</td>
<td>350.02</td>
<td>14.54</td>
<td>0.28</td>
<td>6.05</td>
<td>74.7</td>
<td>6.5</td>
<td>3.8</td>
</tr>
</tbody>
</table>

1) 조사지: 영주시 봉현면, 11년생 감홍/M9, 재식거리 3.5m × 1.5m.
그림 13. 염화칼슘 처리에 따른 감홍 폼종 과실 품질 비교
제 4 장 연구개발 목표 달성도 및 대외 기여도
* 연도별 연구목표 및 평가결과에 입각한 연구개발목표의 달성도 및 관련분야의 기술 발전에의 기여도 등

1절 : 목표대비 달성도

<table>
<thead>
<tr>
<th>연구개발 목표</th>
<th>연구개발내용</th>
<th>달성도 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ 제1세부과제 : 사과 '감홍' 품종의 종합기술 현장실증</td>
<td>- 유대제배시 '감홍'의 고두경감 기술</td>
<td>100</td>
</tr>
<tr>
<td>☐ 사과 '감홍' 품종의 고두증상 방지 기술 적용 효과 검정</td>
<td>- 무대제배시 '감홍'의 엽면시비 기술</td>
<td>100</td>
</tr>
<tr>
<td>☐ 제2세부과제 : 수출용 재배작물의 농약안전사용 연구</td>
<td>- 대만 등 7개국 수출용 사과 국가별 농약 안전사용지침 설정 보급</td>
<td>100</td>
</tr>
<tr>
<td>☐ 수출용 사과 국가별 농약안전사용지침 설정 보급</td>
<td>- 대만 수출사과 농약안전사용지침 설정 보급</td>
<td>100</td>
</tr>
<tr>
<td>☐ 대만 수출사과 농약사용실태 및 잔류량 조사</td>
<td>- 대만 수출사과 농약사용실태 조사 및 잔류농약 모니터링</td>
<td>100</td>
</tr>
<tr>
<td>☐ 수출사과 생산현장 농약사용 분석해결 및 현장기술지원</td>
<td>- 수출사과 농약안전성 컨설팅及 현장기술 지원</td>
<td>100</td>
</tr>
<tr>
<td>☐ 생산현장 농약사용 분석해결 및 현장기술지원</td>
<td>- 국내 사과 등록농약의 대만 엽류기준 반영</td>
<td>100</td>
</tr>
<tr>
<td>☐ 수출사과 생산현장 농약사용 분석해결 및 현장기술지원</td>
<td>- 사과 유대, 무대제배에 따른 농약잔류성 평가</td>
<td>100</td>
</tr>
<tr>
<td>☐ 제3세부과제 : 뒤영벌 봉군을 이용한 사과수분 현장기술접목</td>
<td>☐ 뒤영벌을 이용한 사과 수분법 개발</td>
<td>100</td>
</tr>
<tr>
<td>☐ 사과수분법 향상을 위한 현장기술 접목</td>
<td>☐ 뒤영법을 이용한 사과수분법 현장기술 적용 및 실증</td>
<td>100</td>
</tr>
<tr>
<td>☐ 뒤영법을 이용한 사과수분법 현장기술 적용 및 실증</td>
<td>☐ 뒤영법이용 사과수분법 현장기술적용, 실증 및 교육</td>
<td>100</td>
</tr>
<tr>
<td>☐ 제4세부과제 : 사과 '홍로' 고온기 미세살수에 의한 완성형 향상</td>
<td>☐ 미세살수에 따른 온도 저하와 홍로 밀중상 경감 효과 구명</td>
<td>100</td>
</tr>
<tr>
<td>☐ 고온기 미세살수 및 염화칼슘 처리에 의한 완성형 향상 최적 조건 구명</td>
<td>☐ 염화칼슘 처리에 따른 밀중상 경감 효과 및 살포 적정 횟수 구명</td>
<td>100</td>
</tr>
<tr>
<td>☐ 제5세부과제 : 사과 신종종(홍로, 감홍) 안정생산 및 품질향상 기술 적용 및 효과조사</td>
<td>☐ 사과 종종종(홍로, 감홍) 안정생산 및 품질향상 기술 현장 적용</td>
<td>100</td>
</tr>
<tr>
<td>☐ 사과 종종종(홍로, 감홍) 안정생산 및 품질향상 기술 현장 적용</td>
<td>☐ 사과 종종종의 안정생산 및 품질향상 종합기술 개발</td>
<td>100</td>
</tr>
</tbody>
</table>
제 5 장 연구개발결과의 활용계획
1. 고온기 미세살수와 염화칼슘 병행처리에 의한 밀증상 경감 효과 영농현장에 접목
2. 사과 '홍로' 밀증상 경감을 통한 상품성 향상 및 농가 소득 증대

제 6 장 연구개발과정에서 수집한 해외과학기술정보
1. 비파괴선별기를 통한 사과 내부 밀증상 등 검사로 상품성 향상
2. 미스트와 탄산칼슘을 이용한 사과 일소병 감소

제 7 장 기타 중요 변동사항

<table>
<thead>
<tr>
<th>당초 계획</th>
<th>변경 내용</th>
<th>변경 사유</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 협동과제</td>
<td>손경애</td>
<td>전용택</td>
</tr>
<tr>
<td>3 협동과제</td>
<td>사과작목에서 화분배계곤충 이용현황실태조사 추가</td>
<td></td>
</tr>
<tr>
<td>4. 협동과제</td>
<td>미세살수조건 : 열대야시(야간 25℃이상)</td>
<td>열대야 기온은 하루 중 최저온도 가 25℃ 이상으로 살수조건이 불 명확함.</td>
</tr>
<tr>
<td></td>
<td>염화칼슘처리 : 2~5회</td>
<td>고지대 과원(해발 30m) 1회 추가</td>
</tr>
</tbody>
</table>
제 8 장 국가과학기술종합정보시스템에 등록한 연구장비 현황

<table>
<thead>
<tr>
<th>기자재명</th>
<th>구매금액(원)</th>
<th>구매일자</th>
<th>기자재 활용용도</th>
<th>보관장소</th>
<th>등록번호</th>
</tr>
</thead>
<tbody>
<tr>
<td>적외선 온도계 (열화상 카메라)</td>
<td>7,205,000</td>
<td>2012.07.05.</td>
<td>발산 열 측정</td>
<td>충청북도 농업기술원</td>
<td>NFEC-2013-11-18 4005</td>
</tr>
<tr>
<td>엽록소(광합성) 형광 측정기</td>
<td>21,950,000</td>
<td>2013.04.26.</td>
<td>광합성 효율 측정</td>
<td>충청북도 농업기술원</td>
<td>NFEC-2013-11-18 4016</td>
</tr>
</tbody>
</table>

제 9 장 참고문헌

John Wiley and Sons, New York.
Li Jing, Fengshou Dong, Jun Xu, Xingang Liu, Yuanbo Li, Weili Shan, Yongquan Zheng (2011) Enantioselective determination of triazole fungicide simeconazole in vegetables, fruits, and cereals using modified QuEChERS(quick, easy, cheap, effective, rugged and safe) coupled to gas chromatography/tandem mass spectrometry, Analytica Chimica Acta 702:127-135.
Minitab Incorporated Company (2012) Minitab user’s guide, Minitab Inc., USA.
SPSS incorporated company. 1999. SPSS Base 10.0 user’s guide, SPSS
inc. USA.

Two Dimensional Gas Chromatography-time of Flight Mass Spectrometry (TD-GCxGC-TOFMS)을 이용한 서울 대기 중 PM2.5 유기성분 분석, 한국대기환경학회지, 25(5):420-431.
전세창(2003) 최신 과실생산 이론과 기술. 경기도농업기술원, p.136-144
장택준. 2009. 사과 감홍의 고두병 피해 경감연구. 충청남도농업기술원 시험연구보고서
한국작물보호협회 (2011) 농약사용지침서, 한국, 삼정인쇄공사.
주 의

1. 이 보고서는 농촌진흥청에서 시행한 「(예산사업명)국책기술개발 사업」의 연구보고서입니다.
2. 이 보고서의 내용을 인용·발표할 때는 반드시 농촌진흥청에서 시행한 「(예산사업명)국책기술개발사업」의 결과임을 밝혀야 합니다.
3. 국가과학기술 기밀유지에 필요한 내용은 대외적으로 발표 또는 공개하여서는 아니 됩니다.
본문 작성 요령

1. 본문의 순서는 장, 절, 1, 가, (1), (가), ①, ②, 등으로 하고,
 - 장은 17 포인트 중고딕체
 - 절은 15 포인트 신명조체
 - 본문은 11 포인트 신명조체로 한다.
 단, 본문의 내용 중 중요부문은 중고딕체로 사용할 수 있다.

2. 장은 원칙적으로 페이지를 바꾸어 시작한다.

3. 본문은 11 포인트 횡으로 작성한다.

4. 각주는 해당 페이지 하단에 8포인트 활자로 표기하며, 본문과 구분토록 한다.

5. 한글, 한문, 영문을 혼용한다.

6. 참고문헌(reference) 인용의 경우 본문 중에 사용처를 반드시 표시한다.
<붙임 1> 주요 연구성과 요약

국내육성 사과 감홍 품종 안정생산을 위한 생리 정화 경감 기술 확립

□ 연구 배경
○ 국내육성 품종인 '감홍'은 품질은 우수하나 재배기술이 어려워 농가가 재배에 어려움을 호소하고 있음(고두증상 및 동녹발생이 심함)
○ 최근 우수한 품질에 따른 찾는 소비자가 많아지면서 일부 지역(문경)에서 '감홍' 품종의 재배면적이 많아지고 있음

□ 주요 연구성과
○ 사과'감홍'품종의 고두증상 경감 효과
 - (봉지재배) 봉지 씌우기전 3-4회 칼슘제(염화칼슘) 엽면살포
 - (무대재배) 5월말∼7월 상순까지 7∼15일 간격으로 4-5회 살포
○ 당도향상을 위한 무대재배시 봉지씌우기 및 벗기기의 노동력 및 경영비 절감
 - (노동력) 140.8 → 133.7(시간/10a) 5% 절감
 - (경영비) 1,953,322 → 1,29,975(원/10a) 6.3% 절감

파급효과
○ 사과‘감홍’안정생산을 위한 재배 매뉴얼 작성
○ 사과‘감홍’품종의 종합기술 투입에 의한 고품질 안정생산 체계 구축 → 농가소득 향상
○ 개발된 기술의 현장 접목을 통한 국내육성 품종의 재배면적 확대 → 국내육성사과 품종 수출 확대

‘감홍’착과모습 현장평가회 개최 포장견학 및 토의
대만수출 사과 농약안전사용지침 설정보고 및 잔류기준 설정

연구배경
❍ 농식품 안전성확보를 위한 세계 각국의 식품안전관리제도 강화
 - 2008.10.21. 대만의 Positive List System(PLS) 시행
 - 최근 한국산 수출사과 중 잔류농약 초과검출로 인한 통관규제 사례 빈발로
 - 수출 위축 등 경제적 손실 가중(대만 PLS 시행 이후 21회 위반)
 - 2011.2.1. 한국산 사과에 대한 100% 전수검사 조치 발동으로 수출량 격감

주요 연구성과
○ 대만 수출용 사과 농약안전사용지침 설정 보급
 → 검은별무늬병 등 30병해충 580농약 품목(13)
○ 국내 등록농약의 대만 사과 잔류기준 설정을 위한 의견안 제출
 - (의견안 제출) : Azoxystrobin 등 13농약
 - (의견안 반영) : Metconazole 등 11농약(2012.6.20. 대만 행정원위생서)
 ※ 한.대만 경제통상협의회 의제체택 한국의견 설명(11-13)
○ 수출농산물 안전성 확보를 위한 교육 및 대외협력 지원 : 년 10회 이상

파급효과
○ 지침 및 대만의 잔류기준 설정으로 무역 장애요인 해소 및 수출 촉진
 - 농산물 수출의 최대결림돌인 잔류농약문제 해소로 수출농산물 안전생산 가능
 - 년 100억 이상의 증대 효과 및 농약당 3~4억 등록비용 절감+α
뒤영벌을 이용한 사과수분법 현장 실험 및 평가회 개최

■ 연구 배경
 ○ 사과의 수분을 위해서는 주로 꿀벌 및 머리뿔가위벌 등의 수분곤충을 이용하고 있는데 개화시기에 기상이 불량한 경우, 이들의 방화활동이 저조하여 사과의 결실 및 생산 등에 문제가 되고 있음

■ 주요 연구성과
 ○ 뒤영벌 봉군에 의한 사과의 수분방법은 사과의 개화기에 기상조건이 불량할 경우 화분매개곤충 뒤영벌 사용으로 자연수분대비 착과율과 수량을 높일 수 있는 주요기술
 - 이 기술은 개화기가 짧은 사과의 수분을 위해, 탄산가스 또는 냉장으로 폐봉군의 일벌을 마취시킨 다음 봉군형성기의 뒤영벌 봉군에 일벌을 보충하여 사용
 - 개화기가 짧은 사과의 수분을 위해 뒤영벌 봉군에 일벌을 보충하는 방법은 1봉군의 가격으로 2봉군을 사용하는 효과를 나타내 사과농가에서 뒤영벌 가격을 50% 접감

<table>
<thead>
<tr>
<th>사과원에 설치된 뒤영벌 봉군</th>
<th>분배체의 유한포</th>
<th>화분매개곤충의 평균출입봉수</th>
<th>현장평가 (청송)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.0-1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1-3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.1-4.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>4.1</td>
<td></td>
</tr>
</tbody>
</table>

■ 파급효과
 ○ 사과의 수분을 위한 노동시간 절감 및 안정적인 결실을 확보와 고품질 저비용의 친환경적인 사과농업으로 사과농가의 소득에 기여할 수 있는 것으로 평가됨
사과 ‘홍로’ 고온기 미세살수에 의한 상품성 향상

리서치 배경
- 경북 군위와 장수지역에서 여름철 이상고온으로 밀중상 5~15% 발생.
- 사과 ‘홍로’는 생육기 이상고온과 함께 밀중상 발생률 증가하여 상품성 저하를 초래.
- 기존 미세살수 및 염화칼슘의 단독처리 농가 현장접목 연구.

주요 연구성과
- 사과 ‘홍로’ 고온기 미세살수 및 염화칼슘에 의한 밀중상 경감 구명
 - 미국원예학회 포스터 발표 2건(2013)
 - Effects of Fog Moisture Treatment on Reduction of Water Core Occurrence in Apple
 - Establishment on the Application Times of Foliage Spray with CaCl₂ for Water Core Reduction in Apple
 - 영농활용 기관제출 1건(2013)
 - 사과 ‘홍로’ 밀중상 경감을 위한 미세살수와 염화칼슘의 병행처리시 43.8% 경감
- 홍보성과 14.1점(2012~2013)
 - 사과 ‘홍로’ 여름철 고온기 밀중상 예방기술 확립(2013) : 일간지 7건/ 월간지 2건
- 사과 ‘홍로’의 상품성 및 소득향상을 위한 농가 기술지원
 - 농가소득 증가율 : 2011년 대비 61.2%
 - 농가기술지도/ 컨설팅/ 현장기술지원 13건(2012~2013)
 - 자료발간 1건(2012) : 사과 ‘홍로’ 강소농육성 사례집

파급효과
- 사과 ‘홍로’ 밀중상을 효과적으로 경감시켜 상품성 향상 및 농가 소득증대 기여
 - 기존 서리방지시설의 활용 범위 확대
 - 안전한 염화칼슘 사용으로 웰빙 프루트 생산으로 생산자와 소비자간 신뢰 구축
사과 신품종(홍로, 감홍) 안정생산 및 품질향상기술 적용 및 효과조사

□ 연구 배경
 ○ 국내 육성 사과 품종의 보급률이 저조한 실정에서 국내 육성 품종인 ‘홍로’, ‘감홍’의 보급확대를 위하여 개발된 재배관리 기술의 적용과 기술보완이 필요

□ 주요 연구성과
 ○ ‘홍로’, ‘감홍’ 품종의 안정적 생산 및 품질을 높일 수 있는 주요기술

◇ 홍로
 - 품종의 착과량은 유기물 함량이 많은 토양의 경우 대목노출 10cm에 주당 150개, 대목노출 15cm에 100개가 적절
 - 홍로 품종의 수세 저하 및 착과량 과다시 과중, 당도 등 품질 저하

◇ 감홍
 - 무대처리를 하면서 0.4% 염화칼슘 4회 엽면살포가 과실품질 및 생산비 절감, 고두병 감소에 효과적
 - 적과시 중심과보다 측과(2~3번과)를 남기면 고두병 감소에 효과적

○ 현장적용 기술투입으로 농가생산성향상을 13.2%, 농가소득증가율 32% 향상

□ 파급효과
 ○ 사과 ‘홍로’, ‘감홍’ 품종의 안정적 생산을 위한 품질향상 기술과 생산비 절감 기술 투입으로 과실 품질 향상과 농가 소득 증가에 기여할 것으로 평가됨