본문 바로가기
HOME> 논문 > 논문 검색상세

학위논문 상세정보

Computational analysis of magnetohydrodynamic flows in an electrically conducting hairpin duct 원문보기

  • 저자

    Xiao Xuejiao

  • 학위수여기관

    경희대학교

  • 학위구분

    국내석사

  • 학과

    기계공학과

  • 지도교수

  • 발행년도

    2014

  • 총페이지

    54p.

  • 키워드

    Liquid metal Magneto hydrodynamics (MHD) Numerical simulation Hairpin duct;

  • 언어

    eng

  • 원문 URL

    http://www.riss.kr/link?id=T13536609&outLink=K  

  • 초록

    This numerical study examines three-dimensional liquid-metal magneto hydrodynamic flows in a hairpin-shaped electrically-conducting duct with a square cross-section under a uniform magnetic field applied perpendicular to the flow plane. Predicted is detailed information on fluid velocity, pressure, current, and electric potential in the magneto hydro- dynamic duct flows. Higher velocities are observed in the side layers in the inflow and outflow channels, yielding 'M-shaped' velocity profiles. More specifically, in the present study the axial velocity in the side layer near the partitioning wall is higher than that near the outer walls because of the current features therein. In the transition segment, a large velocity recirculation is observed at the entrance of the outflow channel (above the end of partitioning wall) caused by the flow separation, yielding complicated distributions of the electric potential and current therein. The pressure almost linearly decreases along the main flow direction, except for in the transition segment. Cases with different Hartmann numbers are examined and the non-dimensional pressure gradient is smaller in case of larger Hartmann number. In the present study, the electromagnetic characteristics of the liquid metal flows are examined in terms of the electro-motive and electric-field components of the current with an aim to analyze the interdependency of the flow variables.


 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역