본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

THE STEEPEST DESCENT METHOD AND THE CONJUGATE GRADIENT METHOD FOR SLIGHTLY NON-SYMMETRIC, POSITIVE DEFINITE MATRICES

Shin, Dong-Ho  
  • 초록

    It is known that the steepest descent(SD) method and the conjugate gradient(CG) method [1, 2, 5, 6] converge when these methods are applied to solve linear systems of the form Ax = b, where A is symmetric and positive definite. For some finite difference discretizations of elliptic problems, one gets positive definite matrices that are almost symmetric. Practically, the SD method and the CG method work for these matrices. However, the convergence of these methods is not guaranteed theoretically. The SD method is also called Orthores(1) in iterative method papers. Elman [4] states that the convergence proof for Orthores( $\kappa$ ), with $\kappa$ a positive integer, is not heard. In this paper, we prove that the SD method and the CG method converge when the $\iota$ $^2$ matrix norm of the non-symmetric part of a positive definite matrix is less than some value related to the smallest and the largest eigenvalues of the symmetric part of the given matrix.(omitted)


 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
  • 대한수학회 : 저널
유료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기