본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

선택적 SOFM 학습법을 사용한 비선형 형상왜곡 영상의 복원
Nonlinear shape resotration based on selective learning SOFM approach

한동훈    (경북대학교 전자전기공학부   ); 성효경    (경북대학교 전자전기공학부   ); 최흥문    (경북대학교 전자전기공학부  );
  • 초록

    By using a selective learnable self-organizing feature map(SOFM) a more practical and generalized mehtod is proposed in which the effective nonlinear shape restoration is possible regardless of the existence of the distortion modelss. Nonlinear mapping relation is extracted from the distorted imate by using the proposed selective learning SOFGM which has the special property of effectively creating spatially organized internal representations and nonlinear relations of various input signals. For the exact extraction of the mapping relations between the distorted image and the original one, we define a disparity index as a proximal nmeasure of the present state to the final idealy trained state of the SOFM, and we used this index to adjust the training of the mapping relations form the weights of the SOFM. Simulations are conducted on various kinds of distorted images with or without distortion models, and the results show that the proposed method is very efficeint very efficient and practical in nonlinear shape restorations.


 저자의 다른 논문

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기