본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Optical Flow Measurement Based on Boolean Edge Detection and Hough Transform

Chang, Min-Hyuk   (Division of Electronics and Information and Communication Engineering, Chosun UniversityUU0001180  ); Kim, Il-Jung   (Division of Electronics and Information and Communication Engineering, Chosun UniversityUU0001180  ); Park, Jong an   (Division of Electronics and Information and Communication Engineering, Chosun UniversityUU0001180  );
  • 초록

    The problem of tracking moving objects in a video stream is discussed in this pa-per. We discussed the popular technique of optical flow for moving object detection. Optical flow finds the velocity vectors at each pixel in the entire video scene. However, optical flow based methods require complex computations and are sensitive to noise. In this paper, we proposed a new method based on the Hough transform and on voting accumulation for improving the accuracy and reducing the computation time. Further, we applied the Boo-lean based edge detector for edge detection. Edge detection and segmentation are used to extract the moving objects in the image sequences and reduce the computation time of the CHT. The Boolean based edge detector provides accurate and very thin edges. The difference of the two edge maps with thin edges gives better localization of moving objects. The simulation results show that the proposed method improves the accuracy of finding the optical flow vectors and more accurately extracts moving objects' information. The process of edge detection and segmentation accurately find the location and areas of the real moving objects, and hence extracting moving information is very easy and accurate. The Combinatorial Hough Transform and voting accumulation based optical flow measures optical flow vectors accurately. The direction of moving objects is also accurately measured.


  • 주제어

    Optical flow .   Boolean based edge detection .   Hough transform .   voting accumulation.  

  • 참고문헌 (17)

    1. On the information in optical flow , K. Prazdny , Computer Vision Graphics Image Processing / v.23,pp.239-259,
    2. Object tracking with a moving camera , P. J. Burt (et al.) , Proc. IEEE Workshop on Visual Motion / v.,pp.2-12,
    3. Obstacle avoidance using field divergence , R. C. Nelson;J. Aloimonos , IEEE Trans. on Pattern Analysis Mach. Intell. / v.11,pp.1102-1106,
    4. Bounds on time-to-collision and rotation component from first-order derivatives of image flow , M. Subbarao , Computer Vision Graphics Image Processing / v.50,pp.329-341,
    5. Determining optical flow , B. K. P. Horn;B. G. Schunck , Artif. Intell. / v.17,pp.185-203,
    6. Displacement vectors derived from second-order intensity variations in image sequences , H. H. Nagel , Computer Vision Graphics Image Processing / v.21,pp.85-117,
    7. Towards the estimation of displacement vector fields by 'oriented smoothness' constraints , H. H. Nagel;W. Enkelmann , Proc. 7th IEEE Int. Conf. on Pattern Recognition / v.,pp.6-8,
    8. Tracking moving objects in television images , C. Cafforio;F. Rocca , Signal Processing / v.1,pp.133-140,
    9. Computing optical flow from an overconstrained system of linear algebraic equations , M. Campani;A. Verri , Proc. 3rd IEEE Int. Conf. on Computer Vision / v.,pp.22-26,
    10. Multiconstraints-based optical flow estimation and segmentation , P. Nesi;A. Delbimbo;J. L. Sanz , Int. Workshop on Computer Architecture for Machine Perception / v.,pp.419-426,
    11. Combining motion and contrast for segmentation , W. B. Thompson , IEEE Trans. on Pattern Analysis Mach. Intell. / v.2,pp.543-549,
    12. Stochastic relaxation, Gibbs distribution, and Bayesian restoration of images , S. Gemen (et al.) , IEEE Trans. on Pattern Analysis Mach. Intell. / v.6,pp.721-741,
    13. Combining intensity and motion for incremental segmentation and tracking over long image sequence , M. J. Black , Proc. ECCV / v.,pp.485-493,
    14. Segmentation and 2D motion estimate by region fragments , M. Etoh(et. al.) , Proc. 4th Int. Conf. on Computer Vision / v.,pp.192-199,
    15. Local threshold and Boolean function based edge detection , M. B. Ahmad;T.-S. Choi , IEEE Trans. on Consumer Electronics / v.45,pp.674-679,
    16. Estimation of moving information for tracking of moving objects , S.-K. Kang;J.-A. Park , The Korean Society of Mechanical Engineers / v.15,pp.,
    17. A combinatorial Hough transform , D. B.-T.;M. Sandler , Pattern Recognition Letter / v.11,pp.167-174,

 저자의 다른 논문

  • 장민혁 (3)

    1. 2001 "Facial Recognition Algorithm Based on Edge Detection and Discrete Wavelet Transform" Transactions on control, automation and systems engineering 3 (4): 283~288    
    2. 2002 "Edge 검출과 Optical flow 기반 이동물체의 정보 추출" 한국통신학회논문지. The journal of Korea Information and Communications Society. 무선통신 27 (a8): 822~828    
  • 박종안 (53)

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
  • 제어로봇시스템학회 : 저널
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기