본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

A Study on Moldability by Using Fuzzy Logic Based Neural Network(FNN)

Kang, Seong Nam   (Mechatronics Eng., Korea Univ. of Tech. & Edu.  ); Huh, Yong Jeong   (Mechatronics Eng., Korea Univ. of Tech. & Edu.  ); Cho, Hyun Chan   (Information Tech., Korea Univ. of Tech. & Edu.  ); Choi, Man Sung   (Mechatronics Eng., Korea Univ. of Tech. & Edu.  );
  • 초록

    In order to predict the moldability of an injection molded part, a simulation of filling is needed. Short shot is one of the most frequent troubles encountered during injection molding process. The adjustment of process conditions is the most economic way to troubleshoot the problematic short shot in cost and time since the mold doesn't need to be modified at all. But it is difficult to adjust the process conditions appropriately in no times since it requires an empirical knowledge of injection molding. In this paper, the intelligent CAE system synergistically combines fuzzy-neural network(FNN) for heuristic knowledge with CAE programs for analytical knowledge. To evaluate the intelligent algorithms, a cellular phone flip has been chosen as a finite element model and filling analyses have been performed with a commercial CAE software. As the results, the intelligent CAE system drastically reduces the troubleshooting time of short shot in comparison with the expert's conventional way which is similar to the golden section search algorithm.


  • 주제어

    FNN .   Injection Molding .   Short Shot .   CAE .   Process Conditions.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기