본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

The journal of applied pharmacology : the official journal of the Korean Society of Applied Pharmacology v.12 no.4, 2004년, pp.202 - 208   피인용횟수: 1
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Diabetes, Glucose Transport and Hypoglycaemic Agents

Khil, Lee-Yong    (Faculty of Medicine, University of Calgary  );
  • 초록

    Diabetes mellitus is a complex metabolic derangement with hyperglycaemia being the most characteristic symptom of diabetes. Hyperglycaemia can be caused by an increase in the rate of glucose production by the liver or by a decrease in the rate of glucose use by peripheral tissues. Impaired glucose transport is one of the major factors contributing to insulin resistance in type 2 diabetic patients. The ability of insulin to mediate tissue glucose uptake is a critical step in maintaining glucose homeostasis and in clearing the post-prandial glucose load. Glucose transport is mediated by specific carriers called glucose transporters (GLUTs). In this article, the functional importance and molecular mechanisms of insulin-induced glucose transport and development of hypoglycaemic agents which increase glucose transport are reviewed.


  • 주제어

    diabetes .   glucose transport .   hypoglycemic agent .   insulin .   phophatitylinositol 3-kinase .   TC10.  

  • 참고문헌 (70)

    1. Ahmed, Z., Smith, B.J. and Pillay, T.S. (2000). The APS adapter protein couples the insulin receptor to the phosphorylation of c-Cbl and facilitates ligand-stimulated ubiquitination of the insulin receptor. FEBS Lett. 475, 31-34 
    2. Ahn, M.Y., Katsanakis, K.D., Bheda, F. and Pillay, T.S. (2004). Primary and essential role of the adaptor protein APS for recruitment of both c-Cbl and its associated protein CAP in insulin signaling. J. BioI. Chem. 279,21526-21532 
    3. Alessi, D.R, James, S.R, Downes, C.P., Holmes, A.B., Gaffney, P.R, Reese, C.B. and Cohen, P. (1997). Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curro BioI. 7,261-269 
    4. Arribas, M., Valverde, A.M., Burks, D., Klein, J., Farese, R.Y., White, M.F and Benito, M. (2003). Essential role of protein kinase C zeta in the impairment of insulin-induced glucose transport in IRS-2-deficient brown adipocytes. FEBS Lett. 536, 161-166 
    5. Attele, A.S., Zhou, Y.P., Xie, J.T., Wu, J.A, Zhang, L., Dey, L., Pugh, W., Rue, P.A, Polonsky, K.S. and Yuan, C.S. (2002). Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes. 51, 1851-1858 
    6. Bailey, C.J. and Turner, R.C. (1996). Metformin. N. Engl. J. Med. 334, 574-579 
    7. Baldwin, S.A (1993). Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteins. Biochim. Biophys. Acta. 1154, 17-49 
    8. Baumann, C.A, Ribon, V., Kanzaki, M., Thurmond, D.C., Mora, S., Shigematsu, S., Bickel, P.E., Pessin, J.E. and Saltiel, A.R. (2000). CAP defines a second signalling pathway required for insulinstimulated glucose transport. Nature. 407,202-207 
    9. Carvalho, E, Schellhorn, S.E., Zabolotny, J.M., Martin, S., Tozzo, E., Peroni, O.D., Houseknecht, K.L., Mundt, A., James, D.E. and Kahn, B.B. (2004). GLUT4 overexpression or deficiency in adipocytes of transgenic mice alters the composition of GLUT4 vesicles and the subcellular localization of GLUT4 and insulinresponsive aminopeptidase. J. BioI. Chem. 279, 21598-21605 
    10. Chiang, S.H., Baumann, C.A., Kanzaki, M., Thurmond, D.C., Watson, R.T., Neudauer, C.L., Macara, I.G., Pessin, J.E. and Saltiel, A.R (2001). Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TCIO. Nature. 410, 944-948 
    11. Choi, S.B., Wha, J.D. and Park, S. (2004). The insulin sensitizing effect of homoisoflavone-enriched fraction in Liriope platyphylla Wang et Tang via PI3-kinase pathway. Life Sci. 75, 2653-2664 
    12. Choi, S.B., Wha, J.D. and Park, S. (2004). The insulin sensitizing effect of homoisoflavone-enriched fraction in Liriope platyphylla Wang et Tang via PI3-kinase pathway. Life Sci. 75, 2653-2664 
    13. Ciaraldi, T.P., Huber-Knudsen, K., Hickman, M. and Olefsky, J.M. (1995). Regulation of glucose transport in cultured muscle cells by novel hypoglycemic agents. Metabolism. 44, 976-981 
    14. Ciaraldi, T.P., Kong, A.P., Chu, N.Y., Kim, D.D., Baxi, S., Loviscach, M., Plodkowski, R., Reitz, R., Caulfield, M., Mudaliar, S. and Henry, R.R. (2002). Regulation of glucose transport and insulin signaling by troglitazone or metformin in adipose tissue of type 2 diabetic subjects. Diabetes. 51, 30-36 
    15. Czech, M.P. and Corvera, S. (1999). Signaling mechanisms that regulate glucose transport. J. Bioi. Chem. 274, 1865-1868 
    16. DeFronzo, R.A. (1988). The triumvirate: $\beta$-cell, muscle, liver: a collusion responsible for NIDDM. Diabetes. 37,667-687 
    17. DeFronzo, R.A., Gunnarsson, R., Bjorkman, O., Olsson, M. and Wahren, J. (1985). Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J. Clin. Invest. 76, 149-155 
    18. Ducluzeau, P.H., Fletcher, L.M., Vidal, H., Laville, M. and Tavare, J.M. (2002). Molecular mechanisms of insulin-stimulated glucose uptake in adipocytes. Diabetes Metab. 28, 85-92 
    19. Fajans, S.S and Conn, J.W. (1965). Prediabetes, subclinical diabetes, and latent clinical diabetes: interpretation, diagnosis and treatment. In: On the Nature and Treatment of Diabetes (D.S. Leibel and G.S. Wrenshall, Eds.), pp. 641-656. Excerpta Medica, Amsterdam 
    20. Farese, R.V., Ishizuka, T., Standaert, M.L. and Cooper, D.R. (1991). Sulfonylureas activate glucose transport and protein kinase C in rat adipocytes. Metabolism. 40, 196-200 
    21. Ginsberg, H., Kimmerling, G., Olefsky, J.M. and Reaven, G.M. (1975). Demonstration of insulin resistance in untreated adult onset diabetic subjects with fasting hyperglycemia. J. Clin. Invest. 55, 454-461 
    22. Guyton, A.C. and Hall, J.E. (1996). Textbook of medical physiology. Elsevier Science 
    23. Hill, M.M., Clark, S.F., Tucker, D.F., Birnbaum, M.J., James, D.E. and Macaulay, S.L. (1999). A role for protein kinase Bbeta/Akt2 in insulin-stinmlated GLUT4 translocation in adipocytes. Mol. Cell Biol. 19,7771-7781 
    24. Hundal, R.S., Krssak, M., Dufour, S., Laurent, D., Lebon, Y., Chandramouli, V., Inzucchi, S.E., Schumann, W.C., Petersen, KF., Landau, B.R and Shulman, G.I. (2000). Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes. 49, 2063-2069 
    25. Inzucchi, S.E. (2002). Oral antihyperglycemic therapy for type 2 diabetes: scientific review. JAMA 287, 360-372 
    26. James, D.E. and Piper, R.C. (1994). Insulin resistance, diabetes, and the insulin-regulated trafficking of GLUT-4. J. Cell Biol. 126, 1123-1126 
    27. Jiang, T., Sweeney, G., Rudolf, M.T., Klip, A., Traynor-Kaplan, A and Tsien, R.Y. (1998). Membrane-permeant esters of phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 11017-11024 
    28. Jun, H., Bae, H.Y., Lee, B.R., Koh, K.S., Kim, Y.S., Lee, K.W., Kim, H. and Yoon, J. (1999). Pathogenesis of non-insulindependent (type II) diabetes mellitus (NIDDM) - genetic predisposition and metabolic abnormalities. Adv. Drug Deliv. Rev. 35,157-177 
    29. Kahn, B.B. (1992). Facilitative glucose transporters: regulatory mechanisms and dysregulations in diabetes. J. Clin. Invest. 89, 1367-1374 
    30. Khil, L.Y., Cheon, A.J., Chang, T.S. and Moon, C.K (1997). Effects of calcium on brazilin-induced glucose transport in isolated rat epididymal adipocytes. Biochem. Phannacol. 54, 97-101 
    31. Khil, L.Y, Han, S.S., Kim, S.G., Chang, T.S., Jeon, S.D., So, D.S. and Moon, C.K (1999). Effects of brazilin on GLUT4 recruitment in isolated rat epididymal adipocytes. Biochem. Phannacol. 58, 1705-1712 
    32. Kotani, K., Carozzi, A.J., Sakaue, H., Hara, K, Robinson, L.J., Clark, S.F., Yonezawa, K, James, D.E. and Kasuga, M. (1995). Requirement for phosphoinositide 3-kinase in insulin-stimulated GLUT4 translocation in 3T3-Ll adipocytes. Biochem. Biophys. Res. Commun. 209, 343-348 
    33. Kruszynska, Y.T. and Olefsky, J.M. (1996). Cellular and molecular mechanisms of non-insulin dependent diabetes mellitus. J. Investig. Med. 44,413-428 
    34. Lane, M.D., Flores-Riveros, J.R., Hresko, Re., Kaestner, K.H., Liao, K, Janicot, M., Hoffman, R.D., McLenithan, J.C., Kastelic, T. and Christy, R.J. (1990). Insulin-receptor tyrosine kinase and glucose transport. Diabetes Care. 13, 565-575 
    35. Liu, M.-L., Gibbs, E.M., McCoid, S.C., Milici, A.J., Stukenbrok, H.A., McPherson, R.K., Treadway, J.L. and Pessin, J.E. (1993). Transgenic mice expressing the human GLUT4/muscle-fat facilitative glucose transporter protein exhibit efficient glycemic control. Proc. Natl. Acad. Sci. USA. 90, 11346-11350 
    36. Maier, V.H., Melvin, D.R., Lister, C.A., Chapman, H., Gould, G.W. and Murphy, G.J. (2000). v- and t-SNARE protein expression in models of insulin resistance: normalization of glycemia by rosiglitazone treatment corrects overexpression of cellubrevin, vesicle- associated membrane protein-2, and syntaxin 4 in skeletal muscle of Zucker diabetic fatty rats. Diabetes. 49, 618-625 
    37. Martin, S., Rarnm, G., Lyttle, C.T., Meerloo, T., Stoorvogel, W. and James, D.E. (2000). Biogenesis of insulin-responsive GLUT4 vesicles is independent of brefeldin A-sensitive trafficking. Traffic. I, 652-660 
    38. Mastick, C.C., Brady, M.J. and Saltiel, A.R. (1995). Insulin stimulates the tyrosine phosphorylation of caveolin. J. Cell Biol. 129,1523-1531 
    39. Meyer, C., Dostou, J.M., Welle, S.L. and Gerich, J.E. (2002). Role of human liver, kidney, and skeletal muscle in postprandial glucose homeostasis. Am. J. Physiol. Endocrinol. Metab. 282, E419-427 
    40. Millar, C.A, Shewan, A, Hickson, G.R., James, D.E. and Gould, G.W. (1999). Differential regulation of secretory compartments containing the insulin-responsive glucose transporter 4 in 3T3Ll adipocytes. Mol. Biol. Cell. 10, 3675-3688 
    41. Moller, D.E. (2001). New drug targets for type 2 diabetes and the metabolic syndrome. Nature. 414:821-827 
    42. Moore, M.C., Cherrington, A.D. and Wasserman, D.H. (2003). Regulation of hepatic· and peripheral glucose disposal. Best Pract. Res. Clin. Endocrinol. Metab. 17, 343-364 
    43. MUdaliar, S. and Henry, R.R. (2001). New oral therapies for type 2 diabetes mellitus: the glitazones or insulin sensitizers. Annu. Rev. Med. 52, 239-257 
    44. Pagliassotti, M.J. and Horton, T.J. (1994). Hormonal and neural regulation of hepatic glucose uptake. In The Role of the Liver in Maintaining Glucose Homeostasis (M.J. Pagliassotti, S. Davis and A.D. Cherrington Eds.), pp. 45-70. R.G. Landis, Austin, TX 
    45. Pirart, J. (1978). Diabetes mellitus and its degenerative complications: a prospective study of 4400 patients observed between 1947 and 1973. Diabetes Care. 1, 168-188 
    46. Randhawa, V.K., Bilan, P.J., Khayat, Z.A., Daneman, N., Liu, Z., Rarnlal, T., Volchuk, A., Peng, X..R., Coppola, T., Regazzi, R.,Trimble, W.S. and Klip, A (2000). VAMP2, but not VAMP3/cellubrevin, mediates insulin-dependent incorporation of GLUT4 into the plasma membrane of L6 myoblasts. Mol. Biol. Cell. 11, 2403-2417 
    47. Rea, S. and James, D.E. (1997). Moving GLUT4: the biogenesis and trafficking of GLUT4 storage vesicles. Diabetes. 46, 1667-1677 
    48. Rea, S., Martin, L.B., McIntosh, S., Macaulay, S.L., Ramsdale, T., Baldini, G. and James, D.E. (1998). Syndet, an adipocyte target SNARE involved in the insulin-induced translocation of GLUT4 to the cell surface. J. Biol. Chem. 273, 18784-18792 
    49. Reaven, G.M. (1983). Insulin resistance in noninsulin-dependent diabetes mellitus. Does it exist and can it be measured? Am. J. Med. 74, 3-17 
    50. Ribon, V. and Saltiel, A R (1997). Insulin stimulates tyrosine phosphorylation of the proto-oncogene product of c-Cbl in 3T3-Ll adipocytes. Biochem. J. 324, 839-845 
    51. Ribon, V., Printen, J.A., Hoffman, N.G., Kay, B.K. and Saltiel, A.R. (1998). A novel, multifuntional c-Cbl binding protein in insulin receptor signaling in 3T3-Ll adipocytes. Mol. Cell Biol. 18, 872-879 
    52. Rifkin, H. and Porte, D. (1997). Diabetes Mellitus, Theory and Practice. Elsevier Science 
    53. Sarges, R, Hank, R.F., Blake, J.F., Bordner, J., Bussolotti, D.L., Hargrove, D.M., Treadway, J.L. and Gibbs, E.M. (1996). Glucose transport-enhancing and hypoglycemic activity of 2-methyl-2-phenoxy-3-phenylpropanoic acids. J. Med. Chem. 39, 4783-4803 
    54. Shepherd, P.R., Withers, D.J. and Siddle, K. (1998). Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem. J. 333,471-490 
    55. Shintani, M., Nishimura, H., Yonemitsu, S., Ogawa, Y, Hayashi, T., Hosoda, K., Inoue, G. and Nakao, K. (2001). Troglitazone not only increases GLUT4 but also induces its translocation in rat adipocytes. Diabetes. 50, 2296-2300 
    56. Simpson, F, Whitehead, J.P. and James, D.E. (2001). GLUT4--at the cross roads between membrane trafficking and signal transduction. Traffic. 2, 2-11 
    57. Standaert, M,L., Bandyopadhyay, G., Kanoh, Y., Sajan, M.P. and Farese, R.V. (2001). Insulin and PIP3 activate PKC-zeta by mechanisms that are both dependent and independent of phosphorylation of activation loop (T41O) and autophosphorylation (T560) sites. Biochemistry. 40, 249-255 
    58. Strowski, M.Z., Li, Z., Szalkowski, D., Shen, X., Guan, X.M., Juttner, S., Moller, D.E. and Zhang, B.B. (2004). Small-molecule insulin mimetic reduces hyperglycemia and obesity in a nongenetic mouse model of type 2 diabetes. Endocrinology. 145, 5259-5268 
    59. Tanner, L.I. and Lienhard, G.E. (1987). Insulin elicits a redistribution of transferrin receptors in 3T3-L1 adipocytes through an increase in the rate constant for receptor externalization. J. Biol. Chem. .262, 8975-8980 
    60. Tozzo, E., Shepherd, P.R., Gnudi, L. and Kahn, B.B. (1993). Increased basal and insulin-stimulated glucose transport and metabolism in isolated adipocytes from transgenic mice overexpressing GLUT4 selectively in fat. Diabetes. 42 (Suppl. 1), 13A 
    61. Tsuneki, H., Ishizuka, M., Terasawa, M., Wu, J.B., Sasaoka, T. and Kimura, I. (2004). Effect of green tea on blood glucose levels and serum proteomic patterns in diabetic (db/db) mice and on glucose metabolism in healthy humans. BMC Pharmacol. 4, 18 
    62. UK Prospective Diabetes Study (UKPDS) Group. (1998). Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352, 837-853 
    63. Wallberg-Henriksson, H. and Zierath, J.R. (2001). GLUT4: a key player regulating glucose homeostasis? Insights from transgenic and knockout mice (review). Mol. Membr. Biol. 18,205-211 
    64. Watson, R.T., Shigematsu, S., Chiang, S.H., Mora, S., Kanzaki, M., Macara, I.G., Saltiel, A.R and Pessin, J.E. (2001). Lipid raft microdomain compartmentalization of TCIO is required for insulin signaling and GLUT4 translocation. Cell. BioI. 154, 829-840 
    65. World Heath Organization Study Group (1985). Diabetes mellitus. WHO Tech. Rep. Ser. 727, 1-113 
    66. Wu, L.Y, Juan, C.C., Hwang, L.S., Hsu, Y.P., Ho, P.H. and Ho, L.T. (2004). Green tea supplementation ameliorates insulin resistance and increases glucose transporter IN content in a fructose-fed rat model. Eur. J. Nutr. 43, 116-124 
    67. Yoon, J.W. and Jun, H.S. (1998). Insulin-dependent diabetes mellitus. In Encyclopedia ofImmunology (M.M. Roitt and PJ. Delves, Eds.), pp. 1390-1398. Academic Press, London 
    68. Yoon, J.W. and Jun, H.S. (2001). Cellular and molecular pathogenic mechanisms of insulin-dependent diabetes. Ann. N. Y. Acad. Sci. 928, 200-211 
    69. Zhang, B., Salituro, G., Szalkowski, D., Li, Z., Zhang, Y, Royo, I., Vilella, D., Diez, M.T., Pelaez, F., Ruby, C., Kendall, R.L., Mao, X., Griffm, P., Calaycay, J., Zierath, J.R, Heck, J.V., Smith, R.G. and Moller, D.E. (1999). Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science. 284,974-977 
    70. Zimmerman, B.R. (1997). Sulfonylureas. Endocrinol. Metab. Clin. NorthAm. 26, 511-521 
  • 이 논문을 인용한 문헌 (1)

    1. Lee, Chang Hyun ; Kim, Nam Seok ; Choi, Dong Seong ; Oh, Mi Jin ; Ma, Sang Yong ; Kim, Myoung Soon ; Ryu, Seung Jeong ; Kwon, Jin ; Shin, Hyun Jong ; Oh, Chan Ho 2014. "Effects of Persimmon leaf on the Photoaging Skin Improvement(2)" 동의생리병리학회지 = Journal of physiology & pathology in Korean Medicine, 28(1): 35~44     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기