본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Statistical Methods for Gene Expression Data

Kim, Choongrak   (Department of Statistics, Pusan National UniversityUU0000613  );
  • 초록

    Since the introduction of DNA microarray, a revolutionary high through-put biological technology, a lot of papers have been published to deal with the analyses of the gene expression data from the microarray. In this paper we review most papers relevant to the cDNA microarray data, classify them in statistical methods' point of view, and present some statistical methods deserving consideration and future study.


  • 주제어

    classification .   false discovery rate .   hybridization .   microarray.  

  • 참고문헌 (74)

    1. Breiman,L.;Friedman,J.H.;Olshen,R.;Stone,C.J. , Classification and Regression Trees / v.,pp.,
    2. Ratio-based decisions and the quantitative analysis of cDNA microarray images , Chen,Y.;Dougherty,E.R.;Bittner,M.L. , Journal of Biomedical Optics / v.2,pp.364-374,
    3. Expression profiling using cDNA microarrays , Duggan,D.J.;Bittner,M.;Chen,Y.;Meltzer,P.;Trent,J.M. , Nature Genetics Supplement / v.21,pp.10-14,
    4. A decision -theoretic generalization of on-line learning and an application to boosting , Freund,Y.;Schapire,R.E. , Journal of Computer and System Sciences / v.55,pp.119-139,
    5. Bootstrapping cluster analysis: Assessing the reliability of conclusions microarray experiments , Kerr,M.K.;Churchill,G.A. , Proceedings of the National Academy of Science / v.98,pp.8961-8965,
    6. Classification of multiple cancer types by multicategory support vector machines using gene expression data , Lee,Y.;Lee,C-K. , Bioinformatics / v.19,pp.1132-1139,
    7. High-density synthetic oilgonucleotide arrays , Lipshutz,R.J.;Fordor,S.;Gingeras,T.;Lockhart,D. , Nature Genetics / v.,pp.20-24,
    8. Replicated microarray data , Lonnstadt,I.;Speed,T. , Statistica Sinica / v.12,pp.31-46,
    9. Analyzing high-density oligonucleotide gene expression array data , Schadt,E.E.;Li,C.;Su,C.;Wong,W.H. , Journal of Cellular Biochemistry / v.80,pp.192-202,
    10. Systematic variation in gene expression patterns in human cancer cell lines , Scherf,U.;Ross,D.T.;Waltham,M.;Smith,L.H.;Lee,J.K.;Kohn,K.W.;Reinhold,W.C.;Meyers,T.G.;Andrews,D.T.;Scudiero,D.A.;Eisen,M.B.;Sausville,E.A.;Pommier,Y.;Bostein,D.;Brown,P.O.;Weinstein,J.N. , Nature Genetics / v.24,pp.236-244,
    11. Assessing gene significance from cDNA microarray expression data via mixed models , Wolfinger,R.D.;Gibson,G.;Wolfinger,E.D.;Bennett,L.;Madadeh,H.;Bushel,P.;Afshari,C.;Paules,R.S. , Journal of Computational Biology / v.8,pp.625-638,
    12. Non-linear normalization and background correction in one-channel cDNA microarray studies , Edwards,D. , Bioinformatics / v.19,pp.825-833,
    13. Empirical Bayes analysis of a microarray experiment , Efron,B.;Tibsirani,R.;Storey,J.D.;Tusher,V. , Journal of the Americans Statistical Association / v.96,pp.1151-1160,
    14. Cluster analysis and display of genome-wide expression patterns , Eisen,M.;Spellman,P.T.;Brown,P.O.;Botstein,D. , Proceedings of the National Academy of Science / v.95,pp.14863-14868,
    15. Expression monitoring by hybridization to high-density oligonucleotide arrays , Lockhart,D.J.;Dong,H.;Byrne,M.C.;Follettie,M.T.;Gallo,M.V.;Chee,M.S.;Mittmann,M.;Wang,C.;Kobayashi,M.;Horton,H.;Horton,H. , Nature Biotechnology / v.14,pp.1675-1680,
    16. Adjustment of systematic microarray data biases , Beito,M.;Parker,J.;u,Q.;쪄,J.;Xiang,D.;Perou,C.M.;Marron,J.S. , Bioinformatics / v.20,pp.105-114,
    17. Operating characteristics and extensions of the false discovery rate problem , Genovese,C.;Wasserman,L. , Journal of the Royal Statistical Society,Ser.B. / v.64,pp.499-517,
    18. Diagnosis of multiple cancer types by shrunken centroids of gene expression , Tibshirani,R.;Hastie,T.;Narasimhan,B.;Chu,G. , Proceedings of the National Academy of Science / v.99,pp.6567-6572,
    19. Unsupervised technique for robust target separation and analysis of DNA microarray spots through adaptive pixel clustering , Bozinov,D.;Rahnenfuhrer , Bioinformatics / v.18,pp.747-756,
    20. The transcriptional program of sporulation in budding yeast , Chu,S.;DeRisi,J.;Eisen,M.;Mulholland,J.;Boststein,D.;Brown,P.O.;Herskowitz,I. , Science / v.282,pp.699-705,
    21. Identifying and quantifying sources of variation in microarray data using high-density cDNA membrance arrays , Coombes,K.R.;Highmith,W.E.;Krogmann,T.A.;Baggegly,K.A.;Stivers,D.N.;Abruzzo,L.V. , Journal of Computational Biology / v.9,pp.655-669,
    22. Unfolding of microarray data , Goryachev,A.B.;Macgregor,P.F.;Edwards,A.M. , Journal of Computational Biology / v.8,pp.443-461,
    23. Kohonen,T. , Self-Organizing Maps / v.,pp.,
    24. Singular value decomposition for genome-wide expression data prcessing and modeling , Alter,O.;Brown,P.O.;Bostein,D. , Proceedings of the National Academy of Science / v.97,pp.10101-10106,
    25. Bagging predictors , Breiman,L. , Machine Learning / v.24,pp.123-140,
    26. Knowledge-based analysis of microarray gene expression data by using support vector machines , Brown,M.P.S;Grundy,W.N.;Lin,D.;Cristianini,N.;Sugnet,C.W.;Furey,T.S.;Ares,Jr.M.;Haussler,D. , Proceedings of the National Academy of Science / v.97,pp.262-267,
    27. Identifying differentially expressed genes using false discovery rate controlling procedures , reiner,A.;Yekutieli,D.;Benjamini,Y. , Bioinformatics / v.19,pp.368-375,
    28. Comprehensive identification of cell cycle-regulated genes of the yeast saccaromyces cerevisiae by microarray hybridization , Spellman,P.T.;Sherlock,G.;Zhang,M.Q.;Iyer,V.R.;Andres,K.;Eisen,M.B.;Brown,P.O.;Bostein,D.;Futcher,B. , Molecular Biology of the Cell / v.9,pp.3273-3297,
    29. New normalization methods for cDNA microarray data , Wilson,D.L.;Buckley,M.J.;Helliwell,C.A.;Wilson,I.W. , Bioinformatics / v.19,pp.1325-1332,
    30. Statistical issues in cDNA microarray data analysis,Functional Genomics , Smyth,G.K.;Yang,Y.H.;Speed,T. , Methods and Protocols,To appear / v.,pp.,
    31. Systematic variation in gene expression patterns in human cancer cell lines , Ross,D.T.;Scherf,U.;Eisen,M.B.;Perou,C.M.;Rees,C.;Spellman,P.;Iyer,V.;Jeffrey,S.S.;Van de Rijn,M.;Waltham,M.;Pergamenschikov,A.;Lee,J.C.;Lashkari,D.;Shalon,D.;Myers,T.G.;Weinstein,J.N.;Botstein,D.;Brown,P.O. , Nature Genetics / v.24,pp.227-234,
    32. Ratio statistics of gene expression levels and applicatins to microarray data analysis , Chen,Y.;Kamat,V.;Dougherty,E.R.;Bittner,M.L.;Meltzer,P.S.;Trent,J.M. , Bioinformatics / v.18,pp.1207-1215,
    33. Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations , Lee,M.T.;Kuo,F.C.;Whitemore,G.A.;Sklar,J. , Proceedings of the National Academy of Science / v.97,pp.9834-9839,
    34. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers , Perou,C.M.;Jeffrey,S.S.;van de Rijn,M.;Rees,C.A.;Eisen,M.B.;Ross,D.T.;Pergamenschikov,A.;Williams,C.F.;Zhu,S.X.;Lee,J.C.;Lashkari,D.;Shalon,D.;Brown,P.O.;Botstein,D. , Proceedings of the National Academy of Science / v.16,pp.9212-9217,
    35. Comparison of methods for image analysis on cDNA microarray data , Yang,Y.H.;Buckley,M.J.;Dudoit,S.;Speed,T.P. , Journal of Computational and Graphical Statistics / v.11,pp.108-136,
    36. Bagging to improve the accuracy of a clustering procedure , Dudoit,S.;Fridlyand,J. , Bioinformatics / v.19,pp.1090-1099,
    37. Supervised harvesting of expression trees , Hastie,T.;Tibshirani,R.;Botstein,D.;Brown,P.O. , Genome Biology / v.2,pp.1-12,
    38. Ripley,B.D. , Pattern Recognition and Neural Networks / v.,pp.,
    39. Multiple hypothesis testing , Shaffer,J.P. , Annals Review of Psychology / v.46,pp.561-576,
    40. Interpreting patterns of gene expression with self-organizing mpas: Methods and applications to hematopoietic differentiation , Tamayo,P.;Slonim,T.;Mesirov,J.;Zhu,Q.;Kitareewan,S.;Dmitrovsky,E.;Lander,E.S.;Golub,T.R. , Proceedings of the National Academy of Science / v.96,pp.2907-2912,
    41. Westfall,P.H.;Young,S.S. , Resampling-based Multiple Testing: Examples and Methods for P-value Adjustment / v.,pp.,
    42. DNA microarray experiments: Biological and technological aspects , Nguyen,D.V.;Arpay,A.B.;Wang,N.;Carroll,R.J. , Biometrics / v.58,pp.701-717,
    43. Discriminatory analysis, nonparametric discrimination: consistency properties , Fix,E.;Hodges,J. , Technical Report, School of Aviation Medicine / v.,pp.,
    44. Deriving quantitative conclusions from microarray expression data , Olshen,A.B.;Jain,A.N. , Bioinformatics / v.18,pp.961-970,
    45. Quantitative monitoring of gene expression patterns with a complementary DNA microarray , Schena,M.;Shalon,D.;Davis,R.W.;Brown,P.O. , Science / v.270,pp.467-470,
    46. Gene expression informatics - it's all in your mine , Basset,D.E.;Eisen,M.B.;Boguski,M.S. , Nature Genetics / v.21,pp.51-55,
    47. Molecular classification of cancer:class discovery and class prediction by gene expression monitoring , Golub,T.R.;Slonim,D.K.;Tamayo,P.;Huard,C.;Gaasenbeek,M.;Mesirov,J.P.;Coller,H.;Loh,M.L.;Downing,J.R.;Caligiuri,M.A.;Bloomfield,C.D.;Lander,E.S. , Science / v.286,pp.531-537,
    48. Analysis of variance for microarray data , Kerr,M.K.;Martin,M.;Churchill,G.A. , Journal of Computational Biology / v.7,pp.819-837,
    49. Tissue classification with gene expression profiles , Ben-Dor,A.;Bruhn,L.K.;Friedman,N.;Nachman,L.;Schummer,M.;Yakini,Z. , Journal of Computational Biology / v.7,pp.559-583,
    50. On differential variability of expression ratios : Improving statistical inference about gene expression changes from microarray data , Newton,M.A.;Kendziorski,C.M.;Richmond,C.S.;Blattner,F.R.;Tsui,K.W. , Jourma of Computational Biology / v.8,pp.37-52,
    51. Clustering methods for the analysis of dna microarray data , Tibshirani,R.;Hastie,T.;Eisen,M.;Ross,D.T.;Botstein,D.;Brown,P.O. , Technical Report,Department of Health Research and Policy / v.,pp.,
    52. Different types of diffuse large b-cell lymphoma identified by gene expression profiling , Alizadeh,A.A.;Eisen,M.B.;Davis,R.E.;Ma,C.;Lossos,I.S.;Rosenwald,A.;Boldrick,J.C.;Sabet,H.;Tran,T.;Yu,X.;Powell,J.L.;Yang,L.;Marti,G.E.;Moore,T.;Hudson,Jr.J.;Lu,L.;Lewis,D.B.;Tibshirani,R.;Sherlock,G.;Chan,W.C.;Greiner,T.C.;Weisenburger,D.D.;Armitage,J.O.;Warnke,R.;Levy,R.;Levy,R.;Wilson,W.;Grever,M.R.;Byrd,J.C.;Brown,P.O.;Bostein,D.;Staudt,L.M. , Nature / v.403,pp.503-511,
    53. Controlling the false discovery rate: A practical and powerful approach to multiple testing , Benjamini,Y.;Hochberg,Y. , Journal of the Royal Statistical Society.Ser.B. / v.57,pp.289-300,
    54. The control of the false discovery rate in multiple testing under dependency , Benjamini,Y.;Yekutieli,D. , Tha Annals of Statistics / v.29,pp.1165-1188,
    55. Vapnik,V.N. , Statistical Learning Theory / v.,pp.,
    56. A generalized likelihood ratio test to identify differentially expressed genes from microarray data , Wang,S.;Ethier,S. , Bioinformatics / v.20,pp.100-104,
    57. A Direct approach to false discovery rates , Storey,J.D. , Journal of the Royal Statistical Society Ser.B. / v.64,pp.479-498,
    58. Statistical challenges in functional genomics(with discussion) , Sebastiani,P.;Gussoni,E.;Kohane,L.S.;Ramoni,M.F. , Statistical Science / v.18,pp.33-70,
    59. Comparison of methods for the classification of tumors using gene expression data , Dodoit,S.;Fridlyand,J.;Speed,T. , Journal of the American Statistical Association / v.97,pp.77-87,
    60. The use of multiple measurements in taxonomic problems , Fisher,R.A. , Annals of Eugenics / v.7,pp.179-188,
    61. Bayesian models for gene expression with DNA microarray data , Ibrahim,J.G.;Chen,M-H.;Gray,R.J. , Journal of the American Statistical Association / v.97,pp.88-99,
    62. Feature extraction and normalization algorithms for high-density oligonucleotide gene expression array data , Schadt,E.E.;Li,C.;Ellis,B.;Wong,W.H. , Journal of Cellular Biochemistry / v.84,pp.120-125,
    63. Improved background correction for spotted DNA microarrays , Kooperberg,C.;Fazzio,T.G.;Delrow,J.J.;Tsukiyama,T. , Journal of Computational Biology / v.9,pp.55-66,
    64. A paradigm for class prediction using gene expression profiles , Radmacher,M.D.;McShane,L.M.;Simon,R. , Journal of Computational Biology / v.9,pp.505-511,
    65. Normalization for cDNA microarray data in Microarrays: Optical Technologies and Informatics , Yang,Y.H.;Dudoits,S.;Luu,P.;Speed,T.P. , Proceedings of SPIE / v.,pp.,
    66. Gene expression data analysis , Brazma,A.;Vilo,J. , Federation of European Biochemical Societies Letters / v.480,pp.17-24,
    67. Unsupervised feature selection via two-way ordering in gene expression analysis , Ding,C.H.Q. , Bioinformatics / v.19,pp.1259-1266,
    68. Inference from clustering with application to gene-expression microarrays , Dougherty,E.R.;Barrera,J.;Brun,M.;Kim,S.;Cesar,R.M.;Chen,Y.;Bittner,M.;Trent,J.M. , Journal of Computation Biology / v.9,pp.105-126,
    69. Plaid models for gene expression data , Lazzeroni,L.;Owen,A. , Statistica Sinica / v.12,pp.61-86,
    70. Significance analysis of microarrays applied to the ionizing radiation response , Tusher,V.G.;Tibshirani,R.;Chu,G. , Proceedings of the National Academy of Science / v.98,pp.5116-5121,
    71. Fundamental patterns underlying gene expression profiles: Simplicity from complexity , Holster,N.S.;Mitra,M.;Maritan,A.;Cieplak,M.;Banavar,J.R. , Proceedings of the National Academy of Science / v.97,pp.8409-8414,
    72. Boosting for tumor classification with gene expression data , Dettling,M.;Buhlmann,P. , Bioinformatics / v.19,pp.1061-1069,
    73. Dynamic modeling of gene expression data , Holster,N.S.;Martian,A.;Cieplak,M.;Fedroff,N.V.;Banavar,J.R. , Proceedings of the National Academy of Science / v.98,pp.1693-1698,
    74. Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects , Tseng,G.C.;Oh,M-K;Rohlin,L.;Liao,J.C.;Wong,W.H. , Nucleic Acids Research / v.29,pp.2549-2557,
  • 이 논문을 인용한 문헌 (1)

    1. 2004. "" 한국통계학회 논문집 = Communications of the Korean Statistical Society, 11(2): 369~380     

 저자의 다른 논문

  • 김충락 (19)

    1. 1998 "Smoothing Parameter Selection Using Multifold Cross-Validation in Smoothing Spline Regressions" 한국통계학회 논문집 = Communications of the Korean Statistical Society 5 (2): 277~285    
    2. 1999 "Determination of the Number of Components in Spectroscopy from the Multilinear Model Fitting" 한국통계학회 논문집 = Communications of the Korean Statistical Society 6 (2): 367~374    
    3. 2006 "On Convex Combination of Local Constant Regression" 한국통계학회 논문집 = Communications of the Korean Statistical Society 13 (2): 379~387    
    4. 2007 "Some Results on the Log-linear Regression Diagnostics" 한국통계학회 논문집 = Communications of the Korean Statistical Society 14 (2): 401~411    
    5. 2010 "Hypopharyngeal Wall Exposure within the Surgical Field : The Role of Axial Rotation of the Thyroid Cartilage during Anterior Cervical Surgery" Journal of Korean Neurosurgical Society = 대한신경외과학회지 48 (5): 406~411    
    6. 2010 "구간중도절단자료에서 생존함수와 중간생존시간에 대한 추정" 응용통계연구 = The Korean journal of applied statistics 23 (3): 521~531    
    7. 2011 "Logistic Regression Method in Interval-Censored Data" 응용통계연구 = The Korean journal of applied statistics 24 (5): 871~881    
    8. 2012 "On the Selection of Bezier Points in Bezier Curve Smoothing" 응용통계연구 = The Korean journal of applied statistics 25 (6): 1049~1058    
    9. 2012 "Pointwise Estimation of Density of Heteroscedastistic Response in Regression" 응용통계연구 = The Korean journal of applied statistics 25 (1): 197~203    
    10. 2014 "Nonparametric Estimation of Distribution Function using Bezier Curve" Communications for statistical applications and methods = 한국통계학회논문집 21 (1): 105~114    

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
  • 한국통계학회 : 저널
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기