본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Self-Organizing Polynomial Neural Networks Based on Genetically Optimized Multi-Layer Perceptron Architecture

Park, Ho-Sung    (Dept. of Electrical Electronic & Information Engineering, Wonkwang University   ); Park, Byoung-Jun    (Dept. of Electrical Electronic & Information Engineering, Wonkwang University   ); Kim, Hyun-Ki    (Dept. of Electrical Engineering, Suwon University   ); Oh, Sung-Kwun    (Dept. of Electrical Electronic & Information Engineering, Wonkwang University  );
  • 초록

    In this paper, we introduce a new topology of Self-Organizing Polynomial Neural Networks (SOPNN) based on genetically optimized Multi-Layer Perceptron (MLP) and discuss its comprehensive design methodology involving mechanisms of genetic optimization. Let us recall that the design of the 'conventional' SOPNN uses the extended Group Method of Data Handling (GMDH) technique to exploit polynomials as well as to consider a fixed number of input nodes at polynomial neurons (or nodes) located in each layer. However, this design process does not guarantee that the conventional SOPNN generated through learning results in optimal network architecture. The design procedure applied in the construction of each layer of the SOPNN deals with its structural optimization involving the selection of preferred nodes (or PNs) with specific local characteristics (such as the number of input variables, the order of the polynomials, and input variables) and addresses specific aspects of parametric optimization. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between the approximation and generalization (predictive) abilities of the model. To evaluate the performance of the GA-based SOPNN, the model is experimented using pH neutralization process data as well as sewage treatment process data. A comparative analysis indicates that the proposed SOPNN is the model having higher accuracy as well as more superb predictive capability than other intelligent models presented previously.reviously.


  • 주제어

    Aggregate objective function .   design procedure .   GA-based SOPNN .   Genetic Algorithms (GAs) .   Group Method of Data Handling (GMDH) .   Polynomial Neuron (PN) .   Self-Organizing Polynomial Neural Networks (SOPNN).  

  • 참고문헌 (31)

    1. Comparison of adaptive methods for function estimation from samples , V. Cherkassky;D. Gehring;F. Mulier , IEEE Trans. on Neural Networks / v.7,pp.969-984,
    2. Fuzzy function approximation with ellipsoidal rules , J. A. Dicherson;B. Kosko , IEEE Trans. on Systems, Man and Cybernetics / v.26,pp.542-560,
    3. Polynomial theory of complex systems , A. G. Ivakhnenko , IEEE Trans. on Systems, Man and Cybernetics / v.SMC-1,pp.364-378,
    4. A. G. Ivakhnenko;H. R. Madala , Inductive Learning Algorithms for Complex Systems Modeling / v.,pp.,
    5. The review of problems solvable by algorithms of the group method of data handling (GMDH) , A. G. Ivakhnenko;G. A. Ivakhnenko , Pattern Recognition and Image Analysis / v.5,pp.527-535,
    6. Self-organization of neural networks with active neurons , A. G. Ivakhnenko;G. A. Ivakhnenko;J.A. Muller , Pattern Recognition and Image Analysis / v.4,pp.185-196,
    7. The design of selforganizing polynomial neural networks , S.-K. Oh;W. Pedrycz , Information Science / v.141,pp.237-258,
    8. Polynomial neural networks architecture: analysis and design , S.-K. Oh;W. Pedrycz;B.-J. Park , Computers and Electrical Engineering / v.29,pp.703-725,
    9. Optimal design of self-organizing polynomial neural networks by means of genetic algorithms , H.-S. Park;B.-J. Park;S.-K. Oh , Journal of the Research Institute of Engineering Technology Development (in Korean) / v.22,pp.111-121,
    10. Evolutionary optimization of fuzzy models in fuzzy logic: A framework for the new millennium , W. Pedrycz;M. Reformat;V. Dimitrov(ed.);V. Korotkich(ed.) , Studies in Fuzziness and Soft Computing / v.8,pp.51-67,
    11. J. H. Holland , Adaptation in Natural and Artificial Systems / v.,pp.,
    12. D. E. Goldberg , Genetic Algorithm in Search, Optimization & Machine Learning / v.,pp.,
    13. Are genetic algorithms function optimizers? , K. A. De Jong;Manner R.(ed.);Manderick, B.(ed.) , Parallel Problem Solving from Nature 2 / v.,pp.,
    14. Z. Michalewicz , Genetic Algorithms + Data Structures = Evolution Programs / v.,pp.,
    15. Identification of fuzzy systems by means of an auto-tuning algorithm and its application to nonlinear system , S.-K. Oh;W. Pedrycz , Fuzzy Sets and Systems / v.115,pp.205-230,
    16. Hybrid identification of fuzzy rule-based models , S.-K. Oh;W. Pedrycz;B.-J. Park , Int. J. of Intelligent Systems / v.17,pp.77-103,
    17. Hybrid identification in fuzzy-neural networks , S.-K. Oh;W. Pedrycz;H.-S. Park , Fuzzy Sets and Systems / v.138,pp.399-426,
    18. Fuzzy relation-based neural-networks and their hybrid identification , S.-K. Oh;W. Pedrycz;H.-S. Park , IEEE Trans. on Instrumentation and Measurement / v.,pp.,
    19. F. G. Shinskey , pH and pION Control in Proc. and Waste Streams / v.,pp.,
    20. Modeling and self-tuning control of a multivariable pH neutralization process , R. C. Hall;D. E. Seberg , Proc. ACC / v.,pp.1822-1827,
    21. Time optimal and Ziegler-Nichols control , T. J. McAvoy , Ind. Eng. Chem. Process Des. Develop / v.11,pp.71-78,
    22. Comparison of linear and nonlinear adaptive control of a pH-process , G. A. Pajunen , IEEE Control Systems Magazine / v.7,pp.39-44,
    23. Fuzzy control of pH using genetic algorithms , C. L. Karr;E. J. Gentry , IEEE Trans. on Fuzzy Systems / v.1,pp.46-53,
    24. Dynamics of pH in controlled stirred tank reactor , T. J. McAvoy;E. Hsu;S. Lowenthal , Ind. Engrg. Chem. Process Des. Develop / v.11,pp.68-70,
    25. Dynamic modeling and reaction invariant control of pH , T. K. Gustafsson;K. V. Waller , Chem. Engrg. Sci. / v.38,pp.389-398,
    26. Modeling pH neutralization processes using fuzzy-neural approaches , J. Nie;A. P. Loh;C. C. Hang , Fuzzy Sets and Systems / v.78,pp.5-22,
    27. Fuzzy polynomial neural networks: hybrid architectures of fuzzy modeling , B.-J. Park;W. Pedrycz;S.-K. Oh , IEEE Trans. on Fuzzy Systems / v.10,pp.607-621,
    28. Genetically optimized rule-based fuzzy polynomial neural networks: synthesis of computational intelligence technologies , S.-K. Oh;J. F. Peters;W. Pedrycz;T.-C. Ahn , Lecture Notes in Artificial Intelligence / v.2639,pp.437-444,
    29. Selforganizing neurofuzzy networks based on evolutionary fuzzy granulation , S.-K. Oh;W. Pedrycz;B.-J. Park , IEEE Trans. on SMC-A / v.33,pp.271-277,
    30. S.-K. Oh , Fuzzy Model & Control System by CProgramming / v.,pp.,
    31. S.-K. Oh , Computational Intelligence by Programming focused on Fuzzy, Neural Networks, and Genetic Algorithms / v.,pp.,

 저자의 다른 논문

  • 박호성 (10)

    1. 2000 "HCM 클러스처링과 유전자 알고리즘을 이용한 다중 FPNN 모델 설계와 비선형 공정으로의 응용" 퍼지 및 지능시스템학회 논문지 = Journal of fuzzy logic and intelligent systems 10 (4): 343~350    
    2. 2000 "HCM 클러스터링에 의한 다중 퍼지-뉴럴 네트워크 동정과 유전자 알고리즘을 이용한 이의 최적화" 퍼지 및 지능시스템학회 논문지 = Journal of fuzzy logic and intelligent systems 10 (5): 487~496    
    3. 2001 "퍼지 뉴럴 네트워크 구조로의 새로운 모델링 연구" 제어·자동화·시스템공학 논문지 = Journal of control, automation and systems engineering 7 (8): 664~674    
    4. 2003 "Rule-Based Fuzzy-Neural Networks Using the Identification Algorithm of the GA Hybrid Scheme" International Journal of Control, Automation and Systems 1 (1): 101~110    
    5. 2003 "Multi-FNN Identification Based on HCM Clustering and Evolutionary Fuzzy Granulation" International Journal of Control, Automation and Systems 1 (2): 194~202    
    6. 2004 "진화론적 최적 자기구성 다항식 뉴럴 네트워크" 전기학회논문지. The transactions of the Korean Institute of Electrical Engineers. D / D, 시스템 및 제어부문 53 (1): 40~49    
    7. 2004 "경쟁적 퍼지다항식 뉴런에 기초한 고급 자기구성 뉴럴네트워크" 전기학회논문지. The transactions of the Korean Institute of Electrical Engineers. D / D, 시스템 및 제어부문 53 (3): 135~144    
    8. 2004 "퍼지다항식 뉴론 기반의 유전론적 최적 자기구성 퍼지 다항식 뉴럴네트워크" 전기학회논문지. The transactions of the Korean Institute of Electrical Engineers. D / D, 시스템 및 제어부문 53 (8): 551~560    
    9. 2006 "정보 입자화와 유전자 알고리즘에 기반한 자기구성 퍼지 다항식 뉴럴네트워크의 새로운 접근" 전기학회논문지. The transactions of the Korean Institute of Electrical Engineers. D / D, 시스템 및 제어부문 55 (2): 45~51    
    10. 2006 "정보 입자기반 연속전인 최적화를 통한 자기구성 퍼지 다항식 뉴럴네트워크 : 설계와 해석" 전기학회논문지. The transactions of the Korean Institute of Electrical Engineers. D / D, 시스템 및 제어부문 55 (6): 264~273    
  • 박병준 (12)

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
  • 제어로봇시스템학회 : 저널
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 이용한 콘텐츠
이 논문과 함께 출판된 논문 + 더보기