본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

International Journal of Control, Automation and Systems v.2 no.4, 2004년, pp.463 - 474   피인용횟수: 1

Game Theory Based Coevolutionary Algorithm: A New Computational Coevolutionary Approach

Sim, Kwee-Bo    (School of Electrical and Electronic Engineering, Chung-Ang University   ); Lee, Dong-Wook    (Department of Electrical and Computer Engineering, The University of Tennessee   ); Kim, Ji-Yoon    (School of Electrical and Electronic Engineering, Chung-Ang University  );
  • 초록

    Game theory is a method of mathematical analysis developed to study the decision making process. In 1928, Von Neumann mathematically proved that every two-person, zero-sum game with many pure finite strategies for each player is deterministic. In the early 50's, Nash presented another concept as the basis for a generalization of Von Neumann's theorem. Another central achievement of game theory is the introduction of evolutionary game theory, by which agents can play optimal strategies in the absence of rationality. Through the process of Darwinian selection, a population of agents can evolve to an Evolutionary Stable Strategy (ESS) as introduced by Maynard Smith in 1982. Keeping pace with these game theoretical studies, the first computer simulation of coevolution was tried out by Hillis. Moreover, Kauffman proposed the NK model to analyze coevolutionary dynamics between different species. He showed how coevolutionary phenomenon reaches static states and that these states are either Nash equilibrium or ESS in game theory. Since studies concerning coevolutionary phenomenon were initiated, there have been numerous other researchers who have developed coevolutionary algorithms. In this paper we propose a new coevolutionary algorithm named Game theory based Coevolutionary Algorithm (GCEA) and we confirm that this algorithm can be a solution of evolutionary problems by searching the ESS. To evaluate this newly designed approach, we solve several test Multiobjective Optimization Problems (MOPs). From the results of these evaluations, we confirm that evolutionary game can be embodied by the coevolutionary algorithm and analyze the optimization performance of our algorithm by comparing the performance of our algorithm with that of other evolutionary optimization algorithms.


  • 주제어

    Coevolutionary algorithm .   evolutionary stable strategy .   game theory .   multiobjective optimization problem.  

  • 참고문헌 (60)

    1. L. A. Dugatkin;H. K. Reeve(Eds.) , Game Theory and Animal Behavior / v.,pp.,
    2. J. Von Neumann;O. Morgenstern , The Theory of Games and Economic Behavior / v.,pp.,
    3. Noncooperative games , J. F. Nash , Annals of Mathematics / v.54,pp.289,
    4. J. F. Nash , Essays on Game Theory / v.,pp.,
    5. Evolution and the theory of games , R. C. Lewontin , Journal of Theoretical Biology / v.1,pp.382-403,
    6. An optimal strategy of evolution , L. B. Slobodkin;A. Rapoport , Quarterly Review of Biology / v.49,pp.181-200,
    7. The logic of animal conflict , J. Maynard Smith;G. R. Price , Nature / v.246,pp.15-18,
    8. Co-evolution to the edge of chaos: Coupled fitness landscapes, poised states, and co-evolutionary avalanches , S. A. Kauffman;S. Johnsen , Artificial Life Ⅱ / v.,pp.325-369,
    9. New methods for competitive coevolution , C. D. Rosin;R. K. Belew , Evolutionary Computation / v.5,pp.1-29,
    10. J. Maynard Smith , Evolution and the Theory of Games / v.,pp.,
    11. The evolution of strategies in the iterated prisoner’s dilemma , R. Axelrod;L. Davis(Ed.) , Genetic Algorithms and Simulated Annealing / v.,pp.32-41,
    12. Competitive environments evolve better solutions for complex tasks , P. J. Angeline;J. B. Pollack , Proc. of the 5th Int. Conf. on Genetic Algorithms / v.,pp.264-270,
    13. R. Weber , Mathematics for operational research / v.,pp.,
    14. Evolutionary stability: One concept, several meanings , S. Lessard , Theoretical Population Biology / v.37,pp.159-170,
    15. The essential properties of evolutionary stability , G. W. Rowe;I. F. Harvey;S. F. Hubbard , Journal of Theoretical Biology / v.115,pp.269-285,
    16. S. H. Strogatz , Nonlinear Dynamics and Chaos / v.,pp.,
    17. “Coevolutionary computation , J. Paredis , Artificial Life / v.2,pp.355-379,
    18. Steps towards coevolutionary classification neural networks , J. Paredis , Artificial Life Ⅳ / v.,pp.102-108,
    19. Coevolutionary process control , J. Paredis , Proc. of Int. Conf. on Artificial Neural Networks and Genetic Algorithms / v.,pp.394-398,
    20. Coevolutionary constraint satisfaction , J. Paredis , Proc. of PPSN-Ⅲ, Lecture Notes in Computer Science 866 / v.,pp.46-55,
    21. The symbiotic evolution of solutions and their representations , J. Paredis , Proc. of the 6th Int. Conf. on Genetic Algorithms / v.,pp.359-365,
    22. Symbiotic coevolution for epistatic problems , J. Paredis;W. Wahlser(Ed.) , Proc. of European Conf. on Artificial Intelligence / v.,pp.228-232,
    23. Coevolving cellular automata: Be aware of the red queen! , J. Paredis , Proc. of the 7th Int. Conf. on Genetic Algorithms / v.,pp.393-400,
    24. Computer Simulations of Genetic Adaptation: Parallel Subcomponent Interaction in a Multilocus Model , P. Grosso , Ph. D. dissertation, University of Michigan / v.,pp.,
    25. Punctuated equilibria: A parallel genetic algorithm , J. Cohoon;S. Hegde;W. Martin;D. Richards , Proc. of the 2nd Int. Conf. on Genetic Algorithms / v.,pp.148-154,
    26. A parallel genetic algorithm , C. Petty;M. Leuze;J. Grenfenstette , Proc. of the 2nd Int. Conf. on Genetic Algorithms / v.,pp.155-161,
    27. Distributed genetic algorithms , R. Tanese , Proc. of the 3rd Int. Conf. on Genetic Algorithms / v.,pp.434-439,
    28. Genitor Ⅱ: A distributed genetic algorithm , D. Whitley;T. Starkweather , Journal of Experimental and Theoretical Artificial Intelligence / v.2,pp.189-214,
    29. A coevolutionary approach to learning sequential decision rules , M. A. Potter;K. A. De Jong;J. J. Grefenstette , Proc. of the 6th Int. Conf. on Genetic Algorithms / v.,pp.366-372,
    30. A cooperative coevolutionary approach to function optimization , M. A. Potter;K. A. De Jong , Proc. of Parallel Problem Solving from Nature / v.,pp.249-257,
    31. A coevolutionary approach to learning sequential decision rules , M. A. Potter;K. A. De Jong;J. J. Grefenstette , Proc. of the 6th Int. Conf. on Genetic Algorithms / v.,pp.366-372,
    32. Comparison of multiobjective evolutionary algorithms: Empirical results , E. Zitzler;K. Deb;L. Thiele , Proc. of Genetic and Evolutionary Computation Conf. Workshop Program / v.,pp.121-122,
    33. Multiobjective optimization using evolutionary algorithms - A comparative case study , E. Zitzler;L. Thiele;A. E. Eiben(ed.);T. Beack(ed.);M. Schoenauer(ed.);H. -P. Schwefel(ed.) , Proc. of 5th Int. Conf. on Parallel Problem Solving from Nature / v.,pp.292-301,
    34. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications , E. Zitzler , Ph. D. dissertation, The Swiss Federal Institute of Technology / v.,pp.,
    35. Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach , E. Zitzler , IEEE Trans. on Evolutionary Computation / v.3,pp.257-271,
    36. Multi-objective genetic algorithms: Problem difficulties and construction of test functions , K. Deb , Technical Report No. CI-49/98 / v.,pp.,
    37. J. L. Cohon , Multiobjective Programming and Planning / v.,pp.,
    38. R. E. Steuer , Multiple Criteria Optimization: Theory, Computation, and Application / v.,pp.,
    39. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach , E. Zitzler;L. Thiele , IEEE Trans. on Evolutionary Computation / v.3,pp.257-271,
    40. Multicriterion optimization in structural design , J. Koski;E. Atrek(ed.);R. H. Gallagher(ed.);K. M. Ragsdell(ed.);O. C. Zienkiewicz(ed.) , New Directions in Optimum Structural Design / v.,pp.483-503,
    41. Some Experiments in Machine Learning Using Vector Evaluated Genetic Algorithms , J. D. Schaffer , Ph. D. dissertation, Vanderbilt University / v.,pp.,
    42. Multiple objective optimization with vector evaluated genetic algorithms , J. D. Schaffer , Proc. of Int. Conf. on Genetic Algorithms and Their Applications / v.,pp.93-100,
    43. Multiobjective optimization using the niched Pareto genetic algorithm , J. Horn;N. Nafpliotis , IlliCAL Report 93005 / v.,pp.,
    44. Compaction of symbolic layout using genetic algorithms , M. P. Fourman , Proc. of the 1st Int. Conf. on Genetic Algorithms / v.,pp.141-153,
    45. A variant of evolution strategies for vector optimization , F. Kursawe;H.-P. Schwefel(ed.);R. Maenner(ed.) , Proc. of Parallel Problem Solving from Nature, Lecture Notes in Computer Science 496 / v.,pp.193-197,
    46. Genetic search strategies in multicriterion optimal design , P. Hajela;C.-Y. Lin , Struct. Optim. / v.4,pp.99-107,
    47. Multiobjective optimization and multiple constraint handling with evolutionary algorithms - Part I: A unified formulation , C. M. Fonseca;P. J. Fleming , IEEE Trans. on Systems, Man, and Cybernetics Part A: Systems and Humans / v.28,pp.26-37,
    48. D. E. Goldberg , Genetic Algorithms in Search, Optimization and Machine Learning / v.,pp.,
    49. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization , C. M. Fonseca;P. J. Fleming , Proc. of the 5th Int. Conf. on Genetic Algorithms / v.,pp.416-423,
    50. An overview of evolutionary algorithms in multiobjective optimization , C. M. Fonseca;P. J. Fleming , Evolutionary Computation / v.3,pp.1-16,
    51. Genetic algorithms with sharing for multi-modal function optimization , D. E. Goldberg;J. J. Richardson , Proc. of the 2nd Int. Conf. on Genetic Algorithms / v.,pp.41-49,
    52. A niched Pareto genetic algorithm for multiobjective optimization , J. Horn;N. Nafpliotis;D. E. Goldberg , Proc. of IEEE World Congr. on Computational Intelligence / v.1,pp.82-87,
    53. Multiobjective optimization using non-dominated sorting in genetic algorithms , N. Srinivas;K. Deb , Evolutionary Computation / v.2,pp.221-248,
    54. Hybrid GA for multiobjective aerodynamic shape optimization , C. Poloni;M. Galan(ed.);G. Winter(ed.);J. Periaux(ed.);P. Cuesta(ed.) , Genetic Algorithms in Engineering and Computer Science / v.,pp.397-417,
    55. Parallel geneticsolution for multiobjective MDO , R. Makinen;P. Neittaanmaki;J. Periaux;M. Sefrioui;J. Toivonen , Parallel CFD 96 / v.,pp.,
    56. Genetic algorithms for electromagnetic backscattering: Multiobjective optimization , M.-O. Bristeau;R. Glowinski;B. Mantel;J. Periaux;M. Sefrioui , System Design Using Evolutionary Optimization: Genetic Algorithms / v.,pp.,
    57. Comparison of multiobjective evolutionary algorithms: Empirical results , E. Zitzler;K. Deb;L. Thiele , Proc. of Genetic and Evolutionary Computation Conf. Workshop Program / v.,pp.121-122,
    58. Multi-objective genetic algorithms: Problem difficulties and construction of test problems , K. Deb , Evolutionary Computation / v.7,pp.205-230,
    59. Co-evolving parasites improve simulated evolution as an optimization procedure , W. D. Hillis , Artificial Life Ⅱ / v.,pp.,
    60. Game theory and the simple coevolutionary algorithm: Some preliminary results on fitness sharing , S. G. Ficici;J. B. Pollack , Proc. of GECCO 2001 Workshop on Coevolution / v.,pp.,
  • 이 논문을 인용한 문헌 (1)

    1. Lee Dong-Wook ; Sim Kwee-Bo 2005. "Co-Evolutionary Model for Solving the GA-Hard Problems" 퍼지 및 지능시스템학회 논문지 = Journal of fuzzy logic and intelligent systems, 15(3): 375~381     

 저자의 다른 논문

  • 심귀보 (144)

    1. 1994 "다작업 로보트 매니퓰레이터의 최적 시간 경로 계획을 위한 미소유전알고리즘의 적용" 電子工學會論文誌. Journal of the Korea institute of telematics and electronics. B b31 (4): 40~47    
    2. 1995 "퍼지 보상을 이용한 로봇 매니퓰레이터의 위치/힘제어" 퍼지 및 지능시스템학회 논문지 = Journal of fuzzy logic and intelligent systems 5 (3): 36~51    
    3. 1996 "수중운동체를 위한 퍼지 가중치를 갖는 뉴럴 제어기 설계" 電子工學會論文誌. Journal of the Korea institute of telematics and electronics. B b33 (3): 151~158    
    4. 1996 "진화전략을 이용한 도립진자의 안정화 및 위치제어" 퍼지 및 지능시스템학회 논문지 = Journal of fuzzy logic and intelligent systems 6 (4): 71~80    
    5. 1996 "동적 물체에 대한 로봇 매니퓰레이터의 Visual Servoing" 電子工學會論文誌. Journal of the Korea institute of telematics and electronics. B b33 (1): 15~24    
    6. 1997 "자율이동로봇군의 협조행동을 위한 통신시스템의 개발" 電子工學會論文誌. Journal of the Korean Institute of Telematics and Electronics S. S s34 (3): 33~45    
    7. 1997 "유전 알고리듬과 퍼지논리 시스템을 이용한 비선형 시스템의 피드백 선형화 제어" 電子工學會論文誌. Journal of the Korean Institute of Telematics and Electronics S. S s34 (3): 46~54    
    8. 1997 "강화학습과 분산유전알고리즘을 이용한 자율이동로봇군의 행동학습 및 진화" 電子工學會論文誌. Journal of the Korean Institute of Telematics and Electronics S. S s34 (8): 56~64    
    9. 1997 "진화연산을 이용한 동적 귀환 신경망의 구조 저차원화" 퍼지 및 지능시스템학회 논문지 = Journal of fuzzy logic and intelligent systems 7 (4): 65~73    
    10. 1997 "인공생명을 갖는 지능 로봇시스템의 실현" 電子工學會誌 = The journal of Korea Institute of Electronics Engineers 24 (3): 70~82    
  • 김지윤 (6)

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
  • 제어로봇시스템학회 : 저널
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기