본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

한국육수학회지 = Korean journal of limnology v.37 no.4 = no.109, 2004년, pp.436 - 447   피인용횟수: 1

퇴적물내의 산소와 물 수송에 관한 습지 식물의 역할
Role of Wetland Plants as Oxygen and Water Pump into Benthic Sediments

최정현    (이화여자대학교 공과대학 환경학과   ); 박석순    (이화여자대학교 공과대학 환경학과  );
  • 초록

    습지를 규정하는 주요한 특징의 하나인 습지식물은 장기간의 침수로 인해 혐기성 상태로 존재하는 습지 퇴적물에서 생존을 위한 특별한 적응방법을 발달시켰다. 식물체내에 넓게 분포하고 있는 다공성의 세포는 공기중의 산소를 뿌리로 운반하기 위한 통로로 작용하며, 농도차이에 의한 확산과 압력차이에 의한 대류에 의하여 산소가 운반되어진다. 이러한 식물체 내에서의 산소이동은 식물이 혐기성 퇴적물 속으로 뿌리를 내리고 생존하게 하는 주요한 기작이 된다. 뿌리로 이동되어진 산소는 혐기성 퇴적물로 확산되어져서 뿌리주변의 퇴적물은 산화상태로 변화시키고, 뿌리의 호흡, 미생물의 호흡, 미생물에 의한 유기물 분해반응을 촉진시키게 된다. 또한 습지식물은 생장에 필요한 수분을 뿌리로 흡수하며, 이는 지표수와 퇴적물내 공극수가 뿌리주변으로 이동하게 되는 추진력이 된다. 습지 퇴적물은 식물의 사체에서 기인하는 유기물에 의해 수리학적 전도도가 작아서 퇴적물내 물의 움직임이 미미하나, 식물에 의한 물의 흡수는 퇴적물내 물의 움직임을 촉진시키게 된다. 이러한 식물의 특별한 적응기작은 해부학적, 형태학적, 생리학적으로 많은 연구가 수행되어져 왔으나, 이러한 적응기작들에 퇴적물내 생지화학적 반응에 미치는 영향에 대한 연구는 미비한 수준에 머물러있다. 퇴적물내 생지화학적 반응들은 수체에서 유입된 미량 오염물질의 이동 및 변형과정에 영향을 미치게 되므로 식물의 작용에 의한 생지화학적 반응의 변화들은 미량 오염물질의 거동에 영향을 미치게 되며 나아가 수자원과 수질 생태계에 영향을 초래하게 된다. 따라서 식물의 존재와 성장에 따른 퇴적물내 생지화학적 반응의 변화는 생태학적 환경에서 습지의 중요성을 인식하는데 필요한 연구과제라 사료된다. 난이도, 변별도 등에서 유사하므로 당분간 계속 사용하여도 될 것이다. 따른 변화(變化)는 볼 수 없었다. ATP 첨가(添加)로서는 0.30mM의 농도(濃度)에서 0.15 mM의 농도(濃度)에 비(比)하여 Young 율(率)이 낮았다. 3) 외경동맥(外經動脈)의 종절편(縱切片)의 Young 율(率)은 생리적식염수(生理的食鹽水)에 둔 군(群)에서는 15분(分), 45분(分) 및 75분(分)에서 각각(各各) 2.12, 2.48 및 $2.46{\times}10^7 dyne/cm^2$ 으로서 실험초기(實驗初期)에 비(比)하여 후기(後期)에서 Young 율(率)이 약간(若干) 높은 경향(傾向)을 나타내었고, 이러한 경향(傾向)은 ATP의 첨가(添加)로서도 비슷하였다.수량(收量)과 자실체형성(子實體形成) 소요일(所要日)의 관점(觀點)에서 보면 C/N율(率) 30.46이 어느정도 적당(適當)한 것 같다. 4. Thiamine $50{\mu}g%,\;KH_2PO_4$ 0.2%, $MgSO_4{\cdot}7H_2O$ 는 $0.02{\sim}0.03%$ 일때 균사(菌絲)와 자실체(子實體) 생육(生育)이 우수(優秀)하였으며 미량원소(微量元素)로서는 $FeSO_4{\cdot}7H_2O$,\;ZnSO_4{\cdot}7H_2O$ 및 $MnSO_4{\cdot}5H_2O$ 가 공존(共存)하면 생육촉진(生育促進)의 상승효과(相乘效果)가 인정되었으나 3이원소(元素)중 Mn이 결핍(缺乏)하면 균사(菌絲)와 자실체(子實體)의 생육(生育)이 다소 저하되었다. 이들 염류(鹽類)의 최적농도(最適濃度)는 각각 0.02mg%이었다. 5.


    Wetland plants have evolved specialized adaptations to survive in the low-oxygen conditions associated with prolonged flooding. The development of internal gas space by means of aerenchyma is crucial for wetland plants to transport $O_2$ from the atmosphere into the roots and rhizome. The formation of tissue with high porosity depends on the species and environmental condition, which can control the depth of root penetration and the duration of root tolerance in the flooded sediments. The oxygen in the internal gas space of plants can be delivered from the atmosphere to the root and rhizome by both passive molecular diffusion and convective throughflow. The release of $O_2$ from the roots supplies oxygen demand for root respiration, microbial respiration, and chemical oxidation processes and stimulates aerobic decomposition of organic matter. Another essential mechanism of wetland plants is downward water movement across the root zone induced by water uptake. Natural and constructed wetlands sediments have low hydraulic conductivity due to the relatively fine particle sizes in the litter layer and, therefore, negligible water movement. Under such condition, the water uptake by wetland plants creates a water potential difference in the rhizosphere which acts as a driving force to draw water and dissolved solutes into the sediments. A large number of anatomical, morphological and physiological studies have been conducted to investigate the specialized adaptations of wetland plants that enable them to tolerate water saturated environment and to support their biochemical activities. Despite this, there is little knowledge regarding how the combined effects of wetland plants influence the biogeochemistry of wetland sediments. A further investigation of how the Presence of plants and their growth cycle affects the biogeochemistry of sediments will be of particular importance to understand the role of wetland in the ecological environment.


  • 주제어

    wetland plants .   oxygen .   aerenchyma .   diffusion .   pressurized flow .   evapotranspiration.  

  • 참고문헌 (80)

    1. Allen, R.G., M.E. Jensen, L. James and R.D. Burman. 1989. Operational estimates of reference evapotranspiration. Agron. J. 81: 650-652 
    2. Allen, R.G., J.H. Prueger and R.W. Hill. 1992. Evapotranspiration from isolated stands of hydrophytes: Cattail and Bulrush. Trans. ASAE 35: 1191-1198 
    3. Armstrong, J. and W. Armstrong. 1988. Phragmites australis-A preliminary study of soil-oxidizing sites and internal gas transport pathways. New Phytol. 108: 373-382 
    4. Armstrong, J. and W. Armstrong. 1991. A convective through-flow of gases in Phragmites australis (Cav.) Trin. ex Steud. Aquat. Bot. 39: 75-88 
    5. Armstrong, W. 1964. Oxygen diffusion from the roots of some British bog plants. Nature 204: 801-802 
    6. Armstrong, W., J. Armstrong et al. 1990. Measurement and modeling of oxygen release from roots of Phragmites australis. p. 41-52. In: Constructed wetlands in water pollution control (P.F. Cooper and B.C. Findlater, eds.). Pergamon Press, Oxford, U.K 
    7. Bendix, M., T. Tornbjerg and H. Brix. 1994. Internal gas transport in Typha latifolia L. and Typha angustifolia L. 1. humidity-induced pressurization and convective throughflow. Aquat. Bot. 49: 75-89 
    8. Brix, H., B.K. Sorrell and P.T. Orr. 1992. Internal pressurization and convective gas flow in some emergent freshwater macrophytes. Limnol. Oceanogr. 37: 1420-1433 
    9. Chabbi, A., K.L. Mckee and I.A. Mendelssohn. 2000. Fate of oxygen losses from Typha domingensis (Typhaceae) and Cladium jamaicense (Cyperaceae) and consequences for root metabolism. Am. J. Bot. 87: 1081-1090 
    10. Choi, J.H. 2004. The effect of plants on the dynamics of sulfur species and zinc in wetland sediments. Princeton University Press, Princeton, NJ 
    11. El-Shatnawi, M.K.J., I.M. Makhadmeh. 2001. Ecophysiology of the plant-rhizosphere system. J Agron Crop Sci. 187: 1-9 
    12. Gilbert, B. and P. Frenzel. 1998. Rice roots and CH4 oxidation: the activity of bacteria, their distribution and the microenvironment. Soil Biol. Biochem. 30: 1903-1916 
    13. Idso, S.B. 1981. Relative rates of evaporative water losses from open and vegetation covered water bodies. Wat. Resour. Bull. 17: 46-48 
    14. Kludze, H.K. and R.D. DeLaune. 1996. Soil redox intensity effects on oxygen exchange and growth of Cattail and Sawgrass. Soil Sci. Soc. Am. J. 60: 616-621 
    15. Laan, P., M.J. Berrevoets, S. Lythe, W. Armstrong and C.W.P.M. Blom. 1989. Root morphology and aerenchyma formation as indicators of the floodtolerance of Rumex species. J. Ecol. 77: 693-703 
    16. Mitsch, W.J. and J.G. Gosselink. 1993. Wetlands. Van Nostrand Reinhohld, New York, NY, USA 
    17. Scholander, P.F., L. van Dam and S.I. Scholander. 1955. Gas exchange in the roots of mangrove. Am. J. Bot. 42-92 
    18. Sorrell, B.K. and P.T. Orr. 1993. H± exchange and nutrient uptake by roots of the emergent hydrophytes, Cyperus involucratus Rottb., Eleocharis sphacelata R. Br. And Juncus ingens N.A. Wakef. New Phytol. 125: 85-92 
    19. Winter, M. and R. Kickuth. 1989. Elimination of sul-phur compounds from wastewater by the root zone process-I. Performance of large-scale purification plant at a textile finishing industry. Wat. Res. 23(5): 535-546 
    20. Xu, S. and P.R. Jaffe. Effect of Plants on the Removal of Hexavalent Chromium in Wetland Sediments. submitted 
    21. Yavitt, J.B. and A.K. Knapp. 1998. Aspects of methane flow from sediment through emergent cattail (Typha latifolia) plants. New Phytol. 139: 495-503 
    22. Armstrong, J. and W. Armstrong 1990. Light-enhanced convective throughflow increases oxygenation in rhizomes and rhizosphere of Phragmites australis (Cav.) Trin. Ex Steud. New Phytol. 114: 121-128 
    23. Armstrong, W. 1979. Aeration in higher plants. Adv. Bot. Res. 7: 225-232 
    24. Begg, C.B.M., G.J.D. Kirk, A.F. Mackenzie and H.U. Neue. 1994. Root-induced iron oxidation and pH changes in the lowland rice rhizosphere. New Phytol. 128: 469-477 
    25. Brix, H. and H.H. Schierup. 1989. The use of aquatic macrophytes in water-pollution control. Ambio. 18: 100-107 
    26. Anderson, M.G. and S.B. Idso. 1987. Surface geometry and stomatal conductance effects on evaporation from aquatic macrophytes. Wat. Resour. Res. 23: 1037-1042 
    27. Benton, A.R., Jr., W.P. James and J.W. Rouse, Jr.. 1978. Evapotranspiration from water hyacinth (Eichhornia crassipes (Mart.) Solms) in Texas reservoir. Wat. Resour. Bull. 14: 919-930 
    28. Brix, H. 1990. Gas exchange through the soil-atmosphere interphase and through dead culms of Phragmites australis in a constructed reed bed receiving domestic sewage. Wat. Res. 24: 259-266 
    29. Colmer, T.D. 2003. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Env. 26: 17-36 
    30. Armstrong, J., W. Armstrong and P.M. Beckett. 1992. Phragmites australis: Venturi- and humidityinduced pressure flows enhance rhizome aeration and rhizosphere oxidation. New Phytol. 120: 197-207 
    31. Fleming-Singer, M.S. and A.J. Horne. 2002. Enhanced nitrate removal efficiency in wetland microcosms using an episediment layer for denitrification. Environ. Sci. Technol. 36: 1231-1237 
    32. Reddy, K.R., W.H. Patrick Jr. and C.W. Lindau. 1989. Nitrification-denitrification at the plant rootsediment interface in wetlands. Limnol. Oceanogr. 34(6): 1003-1013 
    33. Abtew, W.S., K.P. Newman and T. Kosier. 1995. Canopy resistance studies of cattails. Trans. ASAE 38: 113-119 
    34. Hopkins, W.G. 1995. Introduction to plant physiology. New York, John Wiley & Sons, Inc 
    35. Mevi-Sch?z, J. and Grosse, W. 1988. A two-way gas transport system in Nelumbo nucifera. Plant Cell Environ. 11: 27-34 
    36. Brix, H., B.K. Sorrell and H.H. Schierup. 1996. Gas Fluxes achieved by in situ convective flow in Phragmites australis. Aquat. Bot. 54: 151-163 
    37. Visser, E.J.W., T.D. Colmer, C.W.P.M. Blom and L.A. C.J. Voesenek. 2000. Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono- and dicotyledonous wetland species with contrasting types of aerenchyma. Plant Cell Env. 23: 1237-1245 
    38. Martin, J.F. and K.R. Reddy. 1997. Interaction and spatial distribution of wetland nitrogen processes. Ecol. Model. 105: 1-21 
    39. Armstrong, W. and P.M. Beckett. 1987. Internal aeration and the development of stellar anoxia in submerged roots. A multishelled mathematical model combining axial diffusion of oxygen in the cortex with radial losses to the stele, the wall layers and the rhizosphere. New Phytol. 105: 221-245 
    40. Armstrong, W., J. Armstrong and P.M. Beckett. 1996a. Pressurised ventilation in emergent macrophytes: the mechanism and mathematical modeling of humidity-induced convection. Aquat. Bot. 54: 121-135 
    41. Hale, M.G. and L.D. Moore. 1979. Factors affecting root exudation II. 1970-79. Adv. Agron. 31: 93-124 
    42. Thomson, C.J., W. Armstrong, I. Waters and H. Greenway. 1990. Aerenchyma formation and associated oxygen movement in seminal and nodal roots of wheat. Plant Cell Env. 13: 395-403 
    43. Carpenter, S.R., J.J. Else and K.M. Olsen. 1983. Effects of roots on Myriophyllum verticillatum L. on sediment redox conditions. Aquat. Bot. 17: 243-249 
    44. Medelssohn, I.A. and M.T. Postek. 1982. Elemental analysis of deposits on the roots of Spartina alterniflora Loisel. Am. J. Bot. 69: 904-912 
    45. Gries C., L. Kappen and R. L?ch. 1990. Mechanism of flood tolerance in reed, Phragmites australis (Cav.) Trin. ex Steudel. New Phytol. 114: 589-593 
    46. Mendelssohn, I.A., B.A. Keiss and J.S. Wakeley. 1995. Factors controlling the formation of oxidized root channels: a review. Wetlands 15: 37-46 
    47. Park, S.S. and Jaff? P.R. 1999. A numerical model to estimate sediment oxygen levels and demand. J. Environ. Qual. 28: 1219-1226 
    48. Kickuth, R. 1977. Degradation and incorporation of nutrients from rural waste waters by plant rhizosphere under limnetic conditions. pp. 335-343. In: Utilization of manure by land spreading. UER 5672e. Commission of the European Communities. London 
    49. Park, S.S. and Jaff? P.R. 1996. Development of a sediment redox potential model for the assessment of postdepositional metal mobility. Ecol. Model. 91: 169-181 
    50. Gunderson, L.H. 1989. Accounting for discrepancies in pan evaporation calculations. Wat. Resour. Bull. 25: 573-579 
    51. Martin, J., Hofherr E. and Quigley, M.F. 2003. Effect of Typha Latifolia transpiration and harvesting on nitrate concentrations in surface water of wetland microcosms. Wetlands 23(4): 835-844 
    52. Brix, H. 1993. Macrophyte-mediated oxygen transfer in wetlands: Transport mechanisms and rates, p. 391-398 In: Constructed wetlands for water quality improvement (G.A. Moshiri Ed.). Boca Raton, Ann Arbor, Lewis Publishers 
    53. Wang, T. and J.H. Peverly. 1999. Iron oxidation States on root surfaces of a wetland plant (Phragmites australis). Soil Sci. Soc. Am. J. 63: 247-252 
    54. Chanton, J.P. and J.W.H. Dacey. 1991. Effects of vegetation on methane flux, reservoirs, and carbon isotopic composition. p. 65-92. In: Trace Gas Emissions by Plants (T. Sharkey, E. Holland, and H. Mooney, eds). Academic Press, San Diego, CA 
    55. Koch, M.S. and P.S. Rawlik. 1993. Transpiration and Stomatal Conductance of two wetland macrophytes. Am. J. Bot. 80(10): 1146-1154 
    56. Dunbabin, J.S., J. Pokorny and K.H. Bowmer. 1988. Rhizosphere oxygenation by Typha domingensis Pers. in miniature artificial wetland filters used for metal removal from wastewaters. Aquat. Bot. 29: 303-317 
    57. Brix, H. 1988. Light-dependent variations in the composition of the internal atmosphere of Phragnites australis (Cav.) Trin. Ex Steudel, Aquat. Bot. 30: 319-329 
    58. Dacey, J.W.H. 1980. Internal winds in the waterlilies: Adaptation for life in anaerobic sediments. Science 210: 1017-1019 
    59. Justin, S.H.F.W. and W. Armstrong. 1987. The anatomical characteristics of roots and plant response to soil flooding. New Phytol. 106: 465-495 
    60. McDonald, M.P., N.W. Galwey and T.D. Colmer. 2002. Similarity and diversity in adventitious root anatomy as related to root aeration among a range of wet- and dry-land grass species. Plant Cell Env. 25: 441-451 
    61. Penfound, W.T. and T.T. Earle. 1948. The biology of the water hyacinth. Ecol. Mono. 18: 417-472 
    62. Jaff? P.R., S. Wang, P.L. Kallin and S.L. Smith. 2001. The Dynamics of Arsenic in Saturated Porous Media: Fate and Transport Modeling for Deep-Water Sediments, Wetland Sediments, and Groundwater Environments. In: Water Rock Interactions, Ore deposits, and Environmental Geochemistry: A Tribute to David Crerar (R. Hellman and S.A. Wood, eds.).The Geochemical Society, Special Publication No 7 
    63. Sorrell, B.K. and P.I. Boon. 1994. Convective gas flow in Eleocharis sphacelata R. Br: methane transport and release from wetlands. Aquat. Bot. 47: 197-212 
    64. Weisner, S.E.B., P.G. Eriksson, W. Graneli and L. Leonardson. 1994. Influence of macrophytes on nitrate removal in wetlands. Ambio. 6: 363-367 
    65. Visser, E.J.W., R.H.M. Nabben, C.W.P.M. Blom and .A.C.J. Voesenek. 1997. Elongation by primary lateral roots and adventitious roots during conditions of hypoxia and high ethylene concentrations. Plant Cell Env. 20: 647-653 
    66. Winter, M. and R. Kickuth. 1989. Elimination of sulphur compounds from wastewater by the root zone process-II. Mode of formation of sulphur deposits. Wat. Res. 23(5): 547-560 
    67. Armstrong, W., D. Cousins, J. Armstrong, D.W. Turner and P.M. Beckett. 2000. Oxygen distribution in wetland plant roots and permeability barr-444 Choi, Jung Hyun..Seok Soon Parkiers to gas-exchange with the rhizosphere: a microelectrode and modeling study with Phragmites australis. Ann. Bot. 86: 687-703 
    68. Dunbabin, J.S. and K.H. Bowmer. 1992. Potential use of constructed wetlands for treatment of industrial wastewaters containing metals. Sci. Tot. Environ. 111: 151-168 
    69. Armstrong, W. 1994. Polarographic oxygen electrodes and their use in plant aeration studies. Proceedings of the Royal Society of Edinburgh. 102B: 511-527 
    70. Beckett, P.M., W. Armstrong, S.H.F.W. Justin and J. Armstrong. 1988. On the relative importance of convective and diffusive gas-flows in plant aeration. New Phytol. 110:463-468 
    71. Brix, H. and H.H. Schierup. 1990. Soil oxygenation in constructed reed beds: the role of macrophyte and soil-atmosphere interface oxygen transport. p. 53-66. In: Constructed wetlands in water pollution control (P.F. Cooper and B.C., Findlater eds.) Pergamon Press, Oxford, U.K 
    72. Connell, E.L., T.D. Colmer and D.I. Walker. 1999. Radial oxygen loss from intact roots of Halophila ovalis as a function of distance behind the root tip and shoot illumination. Aquat. Bot. 63: 219-228 
    73. Dacey, J.W.H. 1981. Pressurized Ventilation in the Yellow Waterlily. Ecology 62(5): 1137-1147 
    74. Smirnoff, N. and R.M.M. Crawford. 1983. Variation in the structure and response to flooding of root aerenchyma in some wetland plants. Ann. Bot. 51: 237-249 
    75. Trought, M.C.T. and M.C. Drew. 1980. The development of water-logging damage in young wheat plants in anaerobic solution cultures. J. Exp. Bot. 31: 1573-1585 
    76. Armstrong, W. 1967. The use of polarography in the assay of oxygen diffusing from roots in anaerobic media. Physiol. Plant. 20: 540-553 
    77. Grosse, W., H.B. B?hel and H. Tiebel. 1991. Pressurized ventilation in wetland plants. Aquat. Bot. 39: 89-98 
    78. Armstrong, W. 1971. Radial oxygen losses from intact rice roots as affected by distance from the apex, respiration and waterlogging. Physiol. Plant. 25: 192-197 
    79. Jackson, M.B. and W. Armstrong. 1999. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol. 1: 274-287 
    80. Kallin, P.L. 1999. Modeling the fate and transport of trace metal contaminants in natural and constructed surface flow wetlands. Princeton University Press, Princeton, NJ 
  • 이 논문을 인용한 문헌 (1)

    1. Lee, Jung-Joon ; Lee, Jung-Ho 2009. "Dynamics of the Phytoplankton Community in Upo Wetland." 한국하천호수학회지= Korean journal of limnology, 42(2): 232~241     

 저자의 다른 논문

  • 최정현 (21)

    1. 2000 "ATM 상에서 다양한 프로토콜을 지원하기 위한 MPOA의 구현" 정보처리논문지 = The transactions of the Korea Information Processing Society 7 (1): 181~199    
    2. 2005 "인천해안의 수질관리를 위한 오염부하량 할당에 관한 연구" 대한환경공학회지 = Journal of Korean Society of Environmental Engineers 27 (1): 43~51    
    3. 2005 "퇴적 유기물 분해과정에 따른 물질 거동 변화 예측을 위한 수치모델 적용" 대한환경공학회지 = Journal of Korean Society of Environmental Engineers 27 (2): 151~157    
    4. 2006 "원격탐사를 이용한 대형 수체의 수질 모델 검증 효과 제고 방안에 관한 연구" 대한환경공학회지 = Journal of Korean Society of Environmental Engineers 28 (4): 447~452    
    5. 2006 "효과적인 수질관리를 위한 소유역 중심의 유역관리" 대한환경공학회지 = Journal of Korean Society of Environmental Engineers 28 (8): 820~825    
    6. 2007 "유전자 알고리즘을 이용한 낙동강 유역의 수질 측정망 설계에 관한 연구" 水質保全 = Journal of Korean Society on Water Quality 23 (5): 697~704    
    7. 2008 "팔당호 수질관리 정책의 효과 분석" 대한환경공학회지 = Journal of Korean Society of Environmental Engineers 30 (12): 1225~1230    
    8. 2008 "퇴적물에서 금속 이온 거동에 미치는 습지 식물의 영향에 관한 모델 연구" 水質保全 = Journal of Korean Society on Water Quality 24 (5): 603~610    
    9. 2009 "팔당 상수원 토지이용규제 정책의 문제점과 개선방안" 水質保全 = Journal of Korean Society on Water Quality 25 (6): 855~862    
    10. 2012 "보 설치가 퇴적물 특성에 미치는 영향에 관한 연구" 대한환경공학회지 = Journal of Korean Society of Environmental Engineers 34 (9): 597~603    
  • 박석순 (64)

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기