본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Structural engineering and mechanics : An international journal v.18 no.6, 2004년, pp.731 - 744  
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Numerically integrated modified virtual crack closure integral technique for 2-D crack problems

Palani, G.S.    (Structural Engineering Research Centre, CSIR Campus   ); Dattaguru, B.    (Indian Institute of Science   ); Iyer, Nagesh R.    (Structural Engineering Research Centre, CSIR Campus  );
  • 초록

    Modified virtual crack closure integral (MVCCI) technique has become very popular for computation of strain energy release rate (SERR) and stress intensity factor (SIF) for 2-D crack problems. The objective of this paper is to propose a numerical integration procedure for MVCCI so as to generalize the technique and make its application much wider. This new procedure called as numerically integrated MVCCI (NI-MVCCI) will remove the dependence of MVCCI equations on the type of finite element employed in the basic stress analysis. Numerical studies on fracture analysis of 2-D crack (mode I and II) problems have been conducted by employing 4-noded, 8-noded (regular & quarter-point), 9-noded and 12-noded finite elements. For non-singular (regular) elements at crack tip, NI-MVCCI technique generates the same results as MVCCI, but the advantage for higher order regular and singular elements is that complex equations for MVCCI need not be derived. Gauss numerical integration rule to be employed for 8-noded singular (quarter-point) element for accurate computation of SERR and SIF has been recommended based on the numerical studies.


  • 주제어

    fracture mechanics .   finite element method .   stress intensity factor .   strain energy release rate .   numerical integration.  

  • 참고문헌 (17)

    1. Badari Narayana, K. (1991), "A general procedure for evaluation of crack closure integral in problems of fracture mechanics", Ph.D. Thesis, Indian Institute of Science, Bangalore, India. 
    2. Irwin, G.R. (1958), "Fracture", Handbook Phys., 6, 551-590. 
    3. Schijve, J. (2003), "Fatigue of structures and materials in the 20th century and the state of the art", Int. J. Fatigue, 25, 679-702. 
    4. Badari Narayana, K., Dattaguru, B., Ramamurthy, T.S. and Vijayakumar, K. (1990), "Modified crack closure integral using 6-noded isoparametric quadrilateral singular element", Engg. Fract. Mech., 36, 945-955. 
    5. Rybicki, E.F. and Kanninen, M.F. (1977), "A finite element calculation of stress intensity factors by a modified crack closure integral", Engg. Fract. Mech., 9, 931-938. 
    6. Zienkiewicz, O.C. and Taylor, R.L. (2000), The Finite Element Method, Vol. I: The basis, Vol. II: Solid Mechanics, Butterworth-Hieneman Ltd. 
    7. Dhondt, G., Chergui, A. and Buchholz, F.G. (2001), "Computational fracture analysis of different specimens regarding 3-D and mode coupling effects", Engg. Fract. Mech., 68, 383-401. 
    8. Buchholz, F.G. (1984), "Improved formulae for the FE-calculation of the strain energy release rate by the modified crack closure integral method", Proc. 4th World Congress and Exhibition in FEM, Interlaken, 650- 659. 
    9. Liebowitz, H. and Moyer, E.T. (1989), "Finite element method in fracture mechanics", Comput. Struct., 31, 1-9. 
    10. Rooke, D.P. and Cartwright, D.T. (1976), Compendium of Stress Intensity Factors, Her Majesty's Stationery Office, London. 
    11. Young, M.J. and Sun, C.T. (1993), "On the strain energy release rate for a cracked plate subject to out-of-plane bending moment", Int. J. Fract., 60, 227-247. 
    12. Raju, I.S. (1986), Simple Formulas for Strain Energy Release Rate with Singular Order and Simple Finite Elements, NASA-CR-178186. 
    13. Barsoum, R.S. (1976), "On the use of isoparametric finite elements in linear fracture mechanics", Int. J. Num. Meth. Engg., 10, 25-37. 
    14. Buchholz, F.G., Chergui, A. and Richard, H.A. (2001), "Computational fracture analysis by the MVCCI method regarding 3-D and mode coupling effects for different specimens and loading conditions", Proc. 6th Int. Conf. Biaxial/Multiaxial Fatigue and Fracture, M. De Freitas (Ed.), Portugal, 991-998. 
    15. Cotterell, B. (2002), "The past, present and future of fracture mechanics", Engg. Fract. Mech., 69, 533-553. 
    16. Badari Narayana, K. and Dattaguru, B. (1996), "Certain aspects related to computation by modified crack closure integral", Engg. Fract. Mech., 55, 335-339. 
    17. Owen, D.R.J. and Fawkes, A.J. (1982), Engineering Fracture Mechanics: Numerical Methods and Applications, Pine ridge Press Ltd., Swansea, UK. 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기