본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

담수와 해수에서의 포말 생성 특성
Characteristics of Foam Generation in Freshwater and Seawater

신정식   (부경대학교 화학공학과UU0000598  ); 김병진   (부산바이오기업지원센터CC0106034  ); 서근학   (부경대학교 화학공학과UU0000598  );
  • 초록

    The characteristics of foam generation were assessed for freshwater and seawater using a foam generator. Both in freshwater and seawater, the height of the foam layer increased with initial protein concentrations. The height of the foam layer also increased with pore size of the air distributor. The optimum superficial air velocities (SAV) in freshwater and seawater were 0.84 cm/sec and 0.6 cm/sec, respectively. The height of the foam layer was the highest in pH 3 in freshwater and in the region of pH 5-7 in seawater. The height of the foam layer increased with $NaHCO_3$ concentration in freshwater, and $NaHCO_3$ concentration had little effect in seawater. Removal efficiencies of total suspended solid (TSS) and turbidity decreased with an increase of initial protein concentrations in a batch foam separator both in freshwater and seawater.


  • 주제어

    Foam generation .   Protein .   Suspended solid .   Freshwater .   Seawater.  

  • 참고문헌 (21)

    1. APHA, AWWA and WPCF. 1992. Standard Method for the Examination of Water and Wastewater. 16th ed., American Public Health Association Inc., New York, pp. 132-133 
    2. Battacharjee, S., R. Kumar and K.S. Gandhi. 2001. Modeling of protein mixture separation in a batch foam column. Chem. Eng. Sci., 56, 5499-5510 
    3. Brown, A.K., A. Kaul and J. Varley. 1999. Continuous foaming for protein recovery. Biotechnol. Bioeng., 62(3), 278-290 
    4. Chai, J., V. Loha, A. Prokop and R.D. Tanner. 1998. Effect of bubble velocity and pH step changes on the foam fractionation of sporamin. J. Agric. Food Chem., 46, 2868-2872 
    5. Chen, S. 1994. Modeling surfactant removal in foam fraction-I. Theoretical development. Aqua. Eng., 13, 163-181 
    6. Chen, S., D. Stechy and R.F. Malone. 1996. Suspended solids control in recirculating aquaculture systems. In: Aquaculture Water Reuse System: Engineering Design and Management. Timmons, M.B. and T.M. Losordo eds., Elsevier, Amsterdam, pp. 61-100 
    7. Chen, S., M.B. Timmons, J.J. Bisgoni and D.J. Ane-shansley. 1993. Suspended solids removal by foam fractionation. Prog. Fish Cult., 55(2), 69-75 
    8. Chen, S. 1991. Theoretical and experimental investigation of foam separation applied to aquaculture. Ph.D. Thesis, Cornell University, Ithaca, New York, USA., pp. 231 
    9. Cho, D. and H.N. Chang. 1999. Separation of oil con- taminants by surfactant-aided foam fractionation. Kor. J. Chem. Eng., 15, 445-448 
    10. Kim, B.J. 2002. The foam separation process for the removal of contaminant in seawater. Ph.D. Thesis, Pukyong National University, Busan, Korea, pp. 13 
    11. Lowry, O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265-275 
    12. Miller, G.E. and G.S. Libey. 1984. Evaluation of a trickling biofilter in a recirculating aquaculture system con- taining channel catfish. Aqua. Eng., 3, 39-57 
    13. Morrison, C., L.L. Schramm and E.N. Stasiuk. 1995. A dynamic foam method for the estimation of critical micelle concentration at elevated temperatures and pressures. Petrol. Sci. Eng., 15, 91-100 
    14. Noble, M. and J. Varley. 1998. Protein recovery using gas-liquid dispersion. J. Chromatogr. B, 711, 31-43 
    15. Saleh, Z.S. and M.M. Hossain. 2001. A study of the separation of proteins from multicomponent mixtures by a semi-batch foaming process. Chem. Eng. Process., 40, 371-378 
    16. Suh, K.H. and M.G. Lee. 1995. Treatment of Aquacultural Recirculating Water by Foam Separation-I. Charac- teristics of Protein Separation. J. Kor. Fish. Soc., 28(5), 599-606 
    17. Suh, K.H., B.J. Kim and S.K. Kim. 2001. The removal of aquacultural waste by foam separator from sea water. J. Kor. Inst. Chem. Eng., 39(2), 237-244 
    18. Suzuki, Y. and T. Maruyama. 2002. Removal of suspended solids by coagulation and foam separation using surface-active protein. Wat. Res., 36, 2195-2204 
    19. Tchobanoglous, G. and E.D. Schroeder. 1985. Water Quality. Addison-Wesley Publishing Company, California, pp. 56 
    20. Timons, M.B. and S. Chen. 1995. Mathematical model of a foam fractionator used in aquaculture. J. World Aqua. Soc., 26(3), 225-233 
    21. Wong, C.H., M.M. Hossain and C.E. Davies. 2001. Per-formance of a continuous foam separation column as a function of process variables. Bioproc. Biosyst. Eng., 24, 73-81 

 저자의 다른 논문

  • 신정식 (5)

    1. 2003 "포말 농축물에 의한 포말 생성의 영향인자" 한국수산학회지 = Journal of the Korean Fisheries Society 36 (5): 509~514    
    2. 2004 "해수활어수조에서 붕장어 (Astroconger myriaster)와 넙치 (Puralichyhus olivaceus)에 의한 오염물 발생량 산정" 한국수산학회지 = Journal of the Korean Fisheries Society 37 (6): 492~497    
    3. 2004 "활어수조에서 넙치 사육시 포말분리장치를 이용한 오염물 제거" 한국수산학회지 = Journal of the Korean Fisheries Society 37 (6): 498~504    
    4. 2004 "활어수조에서 포말분리에 의한 오염물 제거시 수력학적 체류시간 영향" 한국수산학회지 = Journal of the Korean Fisheries Society 37 (2): 85~90    
    5. 2004 "해수활어수조의 포말분리시 단백질 농도의 영향" 한국수산학회지 = Journal of the Korean Fisheries Society 37 (1): 18~23    
  • 서근학 (52)

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기