본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

A Proposal for Optical Diagnostics Through the Enhancement of Diffraction Patterns Using Thin-film Interference Filters

Stefanita Carmen Gabriela    (University of Alberta, Department of Electrical and Computer Engineering Edmonton   ); Shao Yun Feng    (University of Alberta, Department of Electrical and Computer Engineering Edmonton  );
  • 초록

    Coarse clumping of solid materials within diseased biological cells can have a marked influence on the light scattering pattern. Perturbations in refractive index lead to distinct varia­tions in the cytometric signature, especially apparent over wide scattering angles. The large dynamic range of scattering intensities restricts collection of data to narrow angular intervals be­lieved to have the highest potential for medical diagnosis. We propose the use of an interfer­ence filter to reduce the dynamic range. Selective attenuation of scattering intensity levels is expected to allow simultaneous data collection over a wide angular interval. The calculated angu­lar transmittance of a commercial shortwave-pass filter of cut-off wavelength 580 nm indicates significant attenuation of scattering peaks below ${\~}\;10^{circ}$ , and reasonable peak equalization at higher angles. For the three-dimensional calculation of laser light scattered by cells we use a spectral method code that models cells as spatially varying dielectrics, stationary in time. How­ever, we perform preliminary experimental testing with the interference filter on polystyrene microspheres instead of biological cells. A microfluidic toolkit is used for the manipulation of the microspheres. The paper intends to illustrate the principle of a light scattering detection system incorporating an interference filter for selective attenuation of scattering peaks.


  • 주제어

    interference filter .   light scattering .   microfluidic toolkit .   spectral method.  

  • 참고문헌 (22)

    1. Vo-Dinh, T., B. M. Cullum, and D. L. Stokes (2001) Nanosensors and biochips: Frontiers in biomolecular diagnostics. Sens. Actuat. B. Chem. 74: 2-11 
    2. Mourant, J. R., J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson (1998) Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Appl. Opt. 37: 3586-3593 
    3. Backman, V, V Gopal, M. Kalashnikov, K. Badizadegan, R. Gunar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. Feld (2001) Measuring Cellu-lar structure at submicrometer scale with light scattering spectroscopy. IEEE J. Select. Top. Quant. Electron. 7:887-893 
    4. Shao, Y. (2002) Modeling of Light Propagation in Biologi-cal Tissues. Ph.D. Thesis. University of Alberta, Edmonton Alberta, Canada 
    5. Dunn (1997) Light Scattering Properties of Cells. Ph.D. Thesis. University of Texas at Austin, Austin, Texas, USA 
    6. Quarteroni, A., R. Sacco, and F. Saleri (2000) Numerical Mathematics (Texts in Appl. Math., Vol. 37). Springer Verlag, New York, USA 
    7. Roper Scientific (2002), available online: http://www. roperscientific. com/library_enc_signal.shtml 
    8. Stefanita, C.-G., Y. Shao, W. Rozmus, C. E. Capjack, and C. J. Backhouse, Filtering scattered light in microchip-based cell diagnostics IEEE Trans. Instr. Meas. (in press) 
    9. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang (1988) Spectral Methods in Fluid Dynamics. Springer-Verlag, Berlin, Germany 
    10. Azzam, R. M. A. and N. M. Bashara (1977) Ellipsometry and Polarized Light. North Holland 
    11. Schrum, D., C. Culbertson, S. Jacobson, and M. Ramsey (1999) Microchip-flow cytometry using electrokinetic fo-cusing. Anal. Chem. 71: 4173-4177 
    12. Altendorf, E. H. and P. Yager (1998) Silcon microchannel optical flow cytometer. US Patent 5,726,751 
    13. Interference filter manufacturers' website or product catalogues: e.g. Coherent Inc., Andover Corporation, Melles Griot, Oriel etc 
    14. Shao, Y., A. V. Maxim'ov, I. G. Ourdev, W. Rozmus, and C. E. Capjack (2001) Spectral method simulations of light scattering by biological cells. IEEE J. Quant. Electron. 37:617-625 
    15. Drezek, R., A. Dunn, and R. Richards-Kortum (1996) Three-dimensional computation of light scattering from cells. IEEE J. Select. Top. Quant. Electron. 2: 898-905 
    16. Starlight Xpress (2002), available online: http://www.starlightccd.com 
    17. Drezek, R., A. Dunn, and R. Richards-Kortum (2000) A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges. Opt. Express 6: 147-157 
    18. Amin, M. R., C. E. Capjack, P. Frycz, W. Rozmus, and V. T. Tikhonchuk (1993) Two-dimensional simulations of stimulated Brillouin scattering in laser produced plasma. Phys. Rev. Lett. 71:81-84 
    19. Crabtree, H. J., E. C. S. Cheong, D. A. Tilroe, and C. J. Backhouse (2001) Microchip injection and separation anomalies due to pressure effects. Anal. Chem. 73: 4079-4086 
    20. Mie, G. (1908) Considerations on the optics of turbid media, especially colloidal metal solutions. Ann. Phys. 25:377-442 
    21. Drezek, R., A. Dunn, and R. Richards-Kortum (1999) Light scattering from cells: Finite-difference time-domain simulations and goniometric measurements. Appl. Opt. 38: 3651-3661 
    22. Kohl, M.and M. Cope (1994) Influence of glucose Con-centration on light scattering in tissue. Opt. Lett. 17: 2170-2172 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기