본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Optimized Conditions for In Situ Immobilization of Lipase in Aldehyde-silica Packed Columns

Seo Woo Yong    (Department of Environmental Engineering and Biotechnology, Myongji University   ); Lee Kisay    (Department of Environmental Engineering and Biotechnology, Myongji University  );
  • 초록

    Optimal conditions for the in situ immobilization of lipase in aldehyde-silica packed columns, via reductive amination, were investigated. A reactant mixture, containing lipase and sodium borohydride (NaCBH), was recirculated through an aldehyde-silica packed column, such that the covalent bonding of the lipase, via amination between the amine group of the enzyme and the aldehyde terminal of the silica, and the reduction of the resulting imine group by NaCBH, could occur inside the bed, in situ. Mobile phase conditions in the ranges of pH $7.0{\~}7.8$ , temperatures between $22{\~}28^{circ}C$ and flow rates from $0.8{\~}1.5\;BV/min$ were found to be optimal for the in situ immobilization, which routinely resulted in an immobilization of more than 70 mg­lipase/g-silica. Also, the optimal ratio and concentration for feed reactants in the in situ immobilization: mass ratio [NaCBH]/[lipase] of 0.3, at NaCBH and lipase concentrations of 0.75 and 2.5 g/L, respectively, were found to display the best immobilization characteristics for concentrations of up to 80 mg-lipase/g-silica, which was more than a 2-fold increase in immobilization compared to that obtained by batch immobilization. For tributyrin hydrolysis, the in situ immobilized lipase displayed lower activity per unit mass of enzyme than the batch-immobilized or free lipase, while allowing more than a $45\%$ increase in lipase activity per unit mass of silica compared to batch immobilization, because the quantity of the immobilization on silica was aug­mented by the in situ immobilization methodology used in this study.


  • 주제어

    lipase .   in situ immobilization .   aldehyde-silica .   tributyrin hydrolysis.  

  • 참고문헌 (17)

    1. Wang, T. H. and W. C. Lee (2003) Immobilization of proteins on magnetic nanoparticles. Biotechnol. Bioprocess Eng. 8: 263-267. 
    2. Regan, D. L., P. Dunnill, and M. D. Lilly (1974) Immobilized enzyme reaction stability: Attrition of the support material. Biotechnol. Bioeng. 16: 333-343 
    3. Domenici, E., C. Bertucci, P. Salvadori, G. Felix, I. Cahagne, S. Motellier, and I. W. Wainer (1990) Synthesis and chromatographic properties of an HPLC chiral stationary phase based upon human serum albumin. Chromatographia 29: 170-176 
    4. Larsson, P. O. (1984) High-performance liquid affinity chromatography. Meth. Enzymol. 104: 212-223 
    5. Fessenden, R. J., J. S, Fessenden, and M. W. Logue (1998) Organic Chemistry. 6th ed., pp. 771-772. Brooks/ Cole, CA, USA. 
    6. Sigma-Aldrich, Inc. (2004) http://www.sigmaaldrich.com, L3126 Specification sheet 
    7. Cheetham, P. S. J. (1995) Principles of industrial biocatalysis and bioprocessing. pp. 206-218. In: A. Wiseman (ed.). Handbook of Enzyme Biotechnology, 3rd eds., Ellis Horwood, UK 
    8. Massolini, G., E. Galleri, E. de Lorenzi, M. Pregnolato, M. Terreni, G. Felix, and C. Gandini (2001) Immobilized penicillin G acylase as reactor and chiral selector in liquid chromatography. J. Chromatogr. A 921: 147-160 
    9. Mutty, V. R., J. Bhat, and P. K. A. Muniswaran (2002) Hydrolysis of rice bran oil using immobilized lipase in a stirred batch reactor. Biotechnol. Bioprocess Eng. 7: 367-370     
    10. Brodelius, P. (1978) Industrial applications of immobilized biocatalysts. Adv. Biochem. Eng. 10: 76-129 
    11. R. A. Messing (1978) Carriers for immobilized biologically active systems. Adv. Biochem. Eng. 10: 51-73 
    12. Murty, V. R., J. Bhat, and P. K. A. Muniswaran (2002) Hydrolysis of oils by using immobilized lipase enzyme: A review. Biotechnol. Bioprocess Eng. 7: 57-66     
    13. Chibata, I., T. Tosa, T. Sato, and T. Mori (1976) Production of L-amino acids by aminoacylase adsorbed on DEAE-Sephadex. Meth. Enzymol. 44: 746-759 
    14. Rapp, P. (1995) Production, regulation, and some properties of lipase activity from Fusarium oxysporum f. sp. vasinfectum. Enzyme Microb. Technol. 17: 832-838 
    15. Erlandsson, P., L. Hansson, and R. Isaksson (1986) Direct analytical preparative resolution of enantiomers using albumin adsorbed to silica as a stationary phase. J. Chromatogr. 370: 470-483 
    16. Pitcher, W. H. Jr. (1978) Design and operation of immo-bilized enzyme reactors. Adv. Biochem. Eng. 10: 1-26 
    17. Uhlig, H. (1998) Industrial Enzyme and Their Applications. pp. 179-190. John Wiley & Sons, NY, USA 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기