본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Selection of Optimum Expression System for Production of Kringle Fragment of Human Apolipoprotein(a) in Saccharomyces cerevisiae

Cha Kwang Hyun    (Department of Agricultural Biotechnology and Center for Agricultural Biotechnology, Seoul National University   ); Kim Myoung Dong    (Department of Agricultural Biotechnology and Center for Agricultural Biotechnology, Seoul National University   ); Lee Tae Hee    (Department of Agricultural Biotechnology and Center for Agricultural Biotechnology, Seoul National University   ); Lim Hyung Kweon    (Mogam Biotechnology Research Institute   ); Jung Kyung Hwan    (Department of Food and Biotechnology, Chungju National University   ); Seo Jin Ho    (Department of Agricultural Biotechnology and Center for Agricultural Biotechnology, Seoul National University  );
  • 초록

    Recombinant Saccharomyces cerevisiae expression systems were developed to pro­duce a novel human anti-angiogenic protein called LK8, an 86 amino-acid kringle fragment pro­tein with three disulfide linkages. Galactose-inducible LK8 expression plasmid was constructed, and LK8 production levels by four S. cerevisiae strains were compared in order to select an op­timal host strain. S. cerevisiae 2805 was the most efficient among the strains tested. Elevating the LK8 gene copy number through multiple integration using 8-sequences as target sites re­sulted in more than a two-fold increase in the LK8 production level compared with the plasmid­based expression system. The maximum LK8 protein concentration of 25 mg/L was obtained from batch cultivation of the yeast transformant that harbors 16 copies of the LK8 gene. In con­clusion, the strain integrated with the multiple LK8 gene secreted the protein with relatively high yield, although, the increased LK8 gene dosage over 11 copies did not lead to further en­hancement in batch cultivations.


  • 주제어

    apolipoprotein(a) .   kringle .   Saccharomyces cerevisiae .   ??????-integration.  

  • 참고문헌 (24)

    1. Carmeliet, P. and R. K. Jain (2000) Angiogenesis in cancer and other diseases. Nature 407: 249-257 
    2. Park, S. J., K. Ryu, C. W. Suh, Y. G. Chai, O. B. Kwon, S. K. Park, and E. K. Lee (2002) Solid-phase refolding of poly-lysine tagged fusion protein of hEGF and angiogenin. Biotechnol. Bioprocess Eng. 7: 1-5     
    3. Mumberg, D., R. Muller, and M. Funk (1994) Regulatable promoters of Saccharomyces cerevisiae: Comparison of transcription activity and their use for heterologous ex-pression. Nucleic Acids Res. 22: 5767-5768 
    4. van Dijken, J. R, J. Bauer, L. Brambilla, P. Duboc, J. M Francois, C. Gancedo, M. L. Giuseppin, J. J. Heijne, M. Hoare, H. C. Lange, E. A. Madden, P. Niederberger, J. Nielsen, J. L. Parou, T. Petit, D. Porro, M. Reuss, N. van Riel, M. Rizzi, H. Y. Steensma, C. T. Verrips, J. Vindelov, and J. T. Pronk (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Micro. Technol. 26: 706-714 
    5. Lee, F. W. F. and N. A. Da Silva (1997) Improved effi-ciency and stability of multiple cloned gene insertions atthe S-sequences of Saccharomyces cerevisiae. Appl. Micro-biot. Biotechnol. 48: 339-345 
    6. Kim, M. D., S. K. Rhee, and J. H. Seo (2001) Enhanced production of anticoagulant hirudin in recombinant Saccharomyces cerevisiae by chromosomal -integration. J. Biotechnol. 85: 41-48 
    7. Wang, X., Z. Wang, and N. A. Da Silva (1996) G418 selection and stability of cloned genes integrated at the chromosomal -sequences of Saccharomyces cerevisiae. Biotechnol. Bioeng. 49: 45-51 
    8. Kim, J. S., H. K. Yu, J. H. Ahn, H. J. Lee, S. W. Hong, K. H. Jung, S. I. Chang, Y. K. Hong, Y. A. Joe, S. M. Byun, S. K. Lee, S. I. Chung, and Y. Yoon (2004) Human apolipoprotein(a) kringle V inhibits angiogenesis in vitro and in vivo by interfering with the activation of focal adhesion kinases. Biochem. Biophys. Res. Commun. 313: 534-540 
    9. Biemans, R., D. Thines, T. Rutgers, M. De Wilde, and T. Cabezon (1991) The large surface protein of hepatitis B virus is retained in the yeast endoplasmic reticulum and provokes its unique enlargement. DNA Cell Biol. 10: 191-200 
    10. Kim, M. D., Y. J. Yoo, S. K. Rhee, and J. H. Seo (2001) Enhanced transformation efficiency of anticoagulant hi-rudin gene into Saccharomyces cerevisiae by double B-sequence. J. Microbiot. Biotechnot. 11: 61-64 
    11. Colville-Nash, P. R. and D. A. Willoughby (1997) Growth factors in angiogenesis: Current interest and therapeutic potential. Mol. Med. Today 4: 14-23 
    12. Moehle, C. M., M. W. Aynardi, M. R., Kolodny, F. J. Park, and E. W. Jones (1987) Protease B of Saccharomyces Cere-visiae: Isolation and regulation of the PRBl structural gene. Genetics 115: 255-263 
    13. Kim, Y. S., S. Y. Kim, J. H. Kim, and S. C. Kim (1999) Xylitol production using recombinant Saccharomyces cerevisiae containing multiple xylose reductase genes at Chro-mosomal S-sequences. J. Biotechnol. 67: 159-171 
    14. Parekh, J. B. and K. D. WittruP (1997) Expression level tuning for optimal heterologous protein secretion in Saccharomyces cerevisiae. Biotechnol. Prog. 13: 117-122 
    15. Sohn, I. H., S. K. Lee, E. S. Choi, and S. K. Rhee (1991) Gene expression and secretion of the anticoagulant hirudin in Saccharomyces cerevisiae. J. Microbiol Biotechnol, 1:266-273 
    16. Lim, Y. Y., S. M. Park, Y. S. Jang, M. S. Yang, and D. H. Kim (2003) Production of a functional mouse interferon from recombinant Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 13: 537-543 
    17. Kim, H. J., J. N. Park, H. O. Kim, D. J. Shin, J. E. Chin, H. B. Lee, S. B. Chun, and S. Bai (2002) Cloning and expression of Paenibacillus sp. neopullunase gene in Saccharomyces cerevisiae producing Schwanniomyces occidentalis glucoamylase. J. Microbiol. Biotechnol. 12: 340-344. 
    18. Cho, K. M., Y. J. Yoo, and H. S. Kang (1999) -integ-ration of endo/exo-glucanase and -glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol. Enzyme Microb. Technol. 25: 23-30 
    19. Peterson M. S, M. D. Kim, K. C. Han, J. H. Kim, and J.H. Seo (2002) Flow cytometric analysis of human Iy-sozyme production in recombinant Saccharomyces Cere-visiae. Biotechnol. Bioprocess Eng. 7: 52-55     
    20. Brower, V (1999) Tumor angiogenesis : New drugs on the block. Nat. Biotechnol. 17: 963-968 
    21. Sambrook, J. and D. W. Russell (2001) Molecutar Clon-ing: A Laboratory Manual. 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y., USA 
    22. Brachmann C. B., A, Davis, G. J. Cost, E. Caputo, P. Hieter, and J. D. Boeke (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disrup-tion and other applications. Yeast 30: 115-132 
    23. Kim, M. D., K. C. Han, H. A. Kang, S. K. Rhee, and J. H. Seo (2003) Coexpression of BiP increased antithrombotichirudin production in recombinant Saccharomyces Cere-visiae. J. Biotechnol. 101: 81-87 
    24. Robinson, A. S., V. Hines, and K. D. WittruP (1994) Pro-tein disulfide isomerase overexpression increases secretion of foreign proteins in Saccharomyces cerevisiae. Biotechnol 12:381-384 

 저자의 다른 논문

  • Cha Kwang Hyun (1)

    1. 2006 "Coexpression of Protein Disulfide Isomerase (PDI) Enhances Production of Kringle Fragment of Human Apolipoprotein(a) in Recombinant Saccharomyces cerevisiae" Journal of microbiology and biotechnology 16 (2): 308~311    
  • Lee, Tae-Hee (4)

  • Lim Hyung Kweon (1)

  • Seo, Jin-Ho (65)

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기