본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of microbiology and biotechnology v.14 no.6, 2004년, pp.1120 - 1128   피인용횟수: 3
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Application of Single-Compartment Bacterial Fuel Cell (SCBFC) Using Modified Electrodes with Metal Ions to Wastewater Treatment Reactor

박두현    (Department of Biological Engineering, Seokyeong University   ); 박영근    (Graduate School of Korea University   ); 유철    (Department of Civil Engineering, Korea University  );
  • 초록

    The SCBFC was composed of bilayered cathode, the outside of which was modified with $Fe^{3+}$ (graphite-Fe(III) cathode) and the inside of which was porcelain membrane, and of an anode which was modified with $Mn^{4+}$ (graphite­Mn(lV) anode). The graphite-Fe(III), graphite-Mn(IV), and porcelain membrane were designed to have micropores. The outside of the cathode was exposed to the atmosphere and the inside was contacted with porcelain membrane. In all SCBFCS the graphite-Fe(III) was used as a cathode, and graphite-Mn(IV) and normal graphite were used as anodes, for comparison of the function between normal graphite and graphite-Mn(IV) anode. The potential difference between graphite-Mn(IV) anode and graphite-Fe(III) cathode was about 0.3 volt, which is the source for the electron driving force from anode to cathode. In chemical fuel cells composed of the graphite-Mn(IV) anode and graphite-Fe(III) cathode, a current of maximal 13 mA was produced coupled to oxidation of NADH to $NAD^{+}$ the current was not produced in SCBFC with normal graphite anode. When growing and resting cells of E. coli were applied to the SCBFC with graphite-Mn(IV) anode, the electricity production and substrate consumption were 6 to 7 times higher than in the SCBFC with normal graphite anode, and when we applied anaerobic sewage sludge to SCBFC with graphite-Mn(IV) anode, the electricity production and substrate consumption were 3 to 5 times higher than in the SCBFC with normal graphite anode. These results suggest that useful electric energy might possibly be produced from SCBFC without electron mediators, electrode-active bacteria, and extra energy consumption for the aeration of catholyte, but with wastewater as a fuel.


  • 주제어

    Single-compartment bacterial fuel cell (SCBFC) .   graphite-Mn(IV) anode .   graphite-Fe(III) cathode .   cyclic voltammetry .   wastewater treatment.  

  • 참고문헌 (28)

    1. Benetto, H. P., G. M. Delaney, J. R. Mason, S. D. Roller, J. L. Stirling, and C. F. Thurston. 1985. The sucrose fuel cell: Efficient biomass conversion using a microbial catalyst. Biotech. Lett. 7: 699-704 
    2. Kim, B. H., H. J. Kim, M. S. Hyun, and D. H. Park. 1999. Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 127- 131 
    3. Lovely, D. R. 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55: 259-287 
    4. Park, D. H. and J. G. Zeikus. 2002. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol. 59: 58-61 
    5. Park, D. H. and J. Gregory Zeikus. 2002. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotech. Bioeng. 81: 348-356 
    6. Tanaka, K., R. Tamamushi, and T. Ogawa. 1985. Bioelectrochemical fuel-cell operated by the cyanobacterium, Anabaena variabilis. Chem. Technol. Biotech. 35B: 191- 197 
    7. Lee, J. W., A. Goel, M. M. Ataai, and M. M. Domach. 2003. Flux regulation patterns and energy audit of E. coli B/r and K-12. J. Microbiol. Biotechnol. 12: 273-278 
    8. Tanaka, K., C. A. Vega, and R. Tamaushi. 1983. Mediating effects of ferric chelate compounds in microbial fuel cell. Bioelectrochem. Bioenerg. 11: 135-143 
    9. Park, J. B., H. W. Lee, S. Y. Lee, J. O. Lee, I. S. Bang, E. S. Choi, D. H. Park, and Y. K. Park. 2002. Microbial community analysis of 5-stage biological nutrient removal process with step feed system. J. Microbiol. Biotechnol. 12: 929-935 
    10. Lovely, D. R., S. J. Givannoni, D. C. White, J. E. Champine, E. J. P. Phillips, Y. Gorby, and S. Goodwin. 1993. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metal. Arch. Microbiol. 159: 336-344 
    11. Bae, J. W., S. K. Rhee, I. S. Kim, S. H. Hyun, and S. T. Lee. 2002. Increased microbial resistance to toxic wastewater by sludge granulation in upflow anaerobic sludge blanket reactor. J. Microbiol. Biotechnol. 12: 901-908 
    12. Habermann, W. and E. H. Pommer. 1991. Biological fuel cells with sulphite storage capacity. Appl. Microbiol. Biotechnol. 35: 128-133 
    13. Park, D. H., B. H. Kim, B. Moore, H. A. O. Hill, M. K. Song, and H. W. Rhee. 1997. Electrode reaction of Desulfovibrio desulfuricans modified with organic conductive compounds. Biotechnol. Tech. 11: 145-148 
    14. Park, D. H. and B. H. Kim. 2001. Growth properties of the iron-reducing bacteria, Shewanella putrefaciens IR-1 and MR-1 coupling to reduction of Fe(III) to Fe(II). J. Microbiol. 39: 273-278 
    15. Thurston, C. F., H. P. Bennetto, G. M. Delaney, J. R. Mason, S. D. Roller, and J. L. Stirling. 1985. Glucose metabolism in a microbial fuel cell, stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to coulombic yields. J. Gen. Microbiol. 131: 1393-1401 
    16. Hoogstraten, C. G., C. V. Grant, T. E. Horton, V. J. DeRose, and R. D. Britt. 2002. Structural analysis of metal ion ligation to nucleotides and nucleic acids using pulsed EPR spectroscopy. J. Am. Chem. Soc. 124: 834-842 
    17. Jeon, C. O., S. H. Woo, and J. M. Park. 2003. Microbial communities of activated sludge performing enhanced biological phosphorus removal in a sequencing batch reactor supplied with glucose. J. Microbiol. Biotechnol. 13: 385-393 
    18. Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy generation. J. Bacteriol. 181: 2403-2410 
    19. Park, D. H. and J. G. Zeikus. 2000. Electricity generation in microbial fuel cells using neutral red and an electronophore. Appl. Environ. Microbiol. 66: 1292-1297 
    20. Allen, R. M. and H. P. Bennetto. 1993. Microbial fuel-cells: Electricity production from carbohydrates. Appl. Biochem. Biotechnol. 39/40: 27-40 
    21. Kim, N., Y. Choi, S. Jung, and S. Kim. 2001. Development of microbial fuel cells using Proteus vulgaris. Bull. Kor. Chem. Soc. 21: 44-48 
    22. Allen, M. J. 1972. Cellular electrophysiology, pp. 247-283. In J. R. Norris and D. W. Ribbons (eds.), Methods in Microbiology. Academic Press, New York, N.Y., U.S.A 
    23. Lovely, D. R. and E. Philip. 1988. Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron and manganese. Appl. Environ. Microbiol. 51: 683-689 
    24. Myer, C. R. and K. H. Nelson, 1990. Respiration-linked proton translocation coupled to anaerobic reduction of manganese (IV) and iron (III) in Shewanella putrefaciens MR-1. J. Bacteriol. 172: 6232-6238 
    25. Roller, S. D., H. P. Bennetto, G. M. Delaney, J. R. Mason, J. L. Stirling, and C. F. Thurston. 1984. Electron-transfer coupling in microbial fuel cells: 1. Comparison of redoxmediator reduction rates and respiration rates of bacteria. J. Chem. Tech. Biotechnol. 34B: 3-12 
    26. Eric, E. R. and D. R. Lovely, 1993. Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl. Environ. Microbiol. 59: 734-742 
    27. Willner, I., G. Arad, and E. Katz. 1998. A biofuel cell based on pyrroloquinoline quinone and microperoxidase-11 monolayer-functionalized electrode. Bioelectrochem. Bioenerg. 44: 209-214 
    28. Park, D. H., S. K. Kim, I. H. Shin, and Y. J. Jeong. 2000. Electricity production in biofuel cell using modified graphite electrode with neutral red. Biotech. Lett. 22: 1301-1304 
  • 이 논문을 인용한 문헌 (3)

    1. 2007. "" Journal of microbiology and biotechnology, 17(2): 218~225     
    2. 2009. "" Biotechnology and bioprocess engineering, 14(6): 687~693     
    3. 2009. "" Journal of microbiology and biotechnology, 19(9): 1019~1027     

 저자의 다른 논문

  • Park, Doo-Hyun (46)

    1. 2001 "Bioelectrochemical Denitrification by Pseudomonas sp. or Anaerobic Bacterial Consortium" Journal of microbiology and biotechnology 11 (3): 406~411    
    2. 2001 "Degradation of Polyvinyl Alcohol by Brevibacillus laterosporus: metabolic Pathway of Polyvinyl Alcohol to Acetate" Journal of microbiology and biotechnology 11 (6): 928~933    
    3. 2002 "Protease 생성균 Aeromonas hydrophila PB16의 분리 및 합성폐수처리능" Korean journal of microbiology = 미생물학회지 38 (4): 235~240    
    4. 2002 "Microbial Community Analysis of 5-Stage Biological Nutrient Removal Process with Step Feed System" Journal of microbiology and biotechnology 12 (6): 929~935    
    5. 2004 "Catalytic Oxidoreduction of Pyruvate/Lactate and Acetaldehyde/Ethanol Coupled to Electrochemical Oxidoreduction of $NAD^+$/NADH" Journal of microbiology and biotechnology 14 (3): 540~546    
    6. 2004 "Biocatalytic Oxidation-Reduction of Pyruvate and Ethanol by Weissella kimchii sk10 Under Aerobic and Anaerobic Conditions" Journal of microbiology and biotechnology 14 (5): 914~918    
    7. 2004 "Metabolic Flux Shift of Weissella kimchii sk10 Grown Under Aerobic Conditions" Journal of microbiology and biotechnology 14 (5): 919~923    
    8. 2004 "Growth and Physiological Properties of Wild Type and Mutants of Halomonas subglaciescola DH-l in Saline Environment" The journal of microbiology 42 (3): 174~180    
    9. 2004 "젓갈(염장발효식품)에서 분리한 호염세균의 생리 및 성장특성" Korean journal of microbiology = 미생물학회지 40 (4): 263~268    
    10. 2005 "Electrochemical Regeneration of FAD by Catalytic Electrode Without Electron Mediator and Biochemical Reducing Power" Journal of microbiology and biotechnology 15 (2): 281~286    
  • 유철 (0)

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기