본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

The journal of microbiology v.42 no.4, 2004년, pp.278 - 284  
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Monitoring of Bacterial Community in a Coniferous Forest Soil After a Wildfire

Kim Ok-Sun    (Department of Environmental Science, Kangwon National University   ); Yoo Jae-Jun    (Department of Environmental Science, Kangwon National University   ); Lee Dong-Hun    (Division of Life Sciences, Chungbuk National University   ); Ahn Tae-Seok    (Department of Environmental Science, Kangwon National University   ); Song Hong-Gyu    (Division of Biological Sciences, Kangwon National University  );
  • 초록

    Changes in the soil bacterial community of a coniferous forest were analyzed to assess microbial responses to wildfire. Soil samples were collected from three different depths in lightly and severely burned areas, as well as a nearby unburned control area. Direct bacterial counts ranged from $3.3­22.6\times10^8\;cells/(g{\cdot}soil).$ In surface soil, direct bacterial counts of unburned soil exhibited a great degree of fluctuation. Those in lightly burned soil changed less, but no significant variation was observed in the severely burned soil. The fluctuations of direct bacterial count were less in the middle and deep soil lay­ers. The structure of the bacterial community was analyzed via the fluorescent in situ hybridization method. The number of bacteria detected with the eubacteria-targeted probe out of the direct bacterial count varied from $30.3\;to\;84.7\%,$ and these ratios were generally higher in the burned soils than in the unburned control soils. In the surface unburned soil, the ratios of $\alpha,\;\beta\;and\;gamma-proteobacteria,$ Cytoph­aga-Flavobacterium group, and other eubacteria groups to total eubacteria were 9.9, 10.6, 15.5, 9.0, and $55.0\%,$ respectively, and these ratios were relatively stable. The ratios of $\alpha,\;\beta\;and\;gamma-proteobacteria,$ and Cytophaga-Flavobacterium group to total eubacteria increased immediately after the wildfire, and the other eubacterial proportions decreased in the surface and middle layer soils. By way of contrast, the composition of the 5 groups of eubacteria in the subsurface soil exhibited no significant fluctuations dur­ing the entire period. The total bacterial population and bacterial community structure disturbed by wildfire soon began to recover, and original levels seemed to be restored 3 months after the wildfire.


  • 주제어

    wildfire .   bacterial community structure .   fluorescent in situ hybridization (FISH).  

  • 참고문헌 (28)

    1. Acea, M., A. Prieto-Fernandez, and N. Diz-Cid. 2003. Cyanobacterial inoculation of heated soils: effect on microorganisms of C and N cycles and on chemical composition in soil surface. Soil Biol. Biochem. 35, 513-524 
    2. Hartmann, A., B. Aamus, G. Kirchhof, and M. Schloter. 1997. Direct approaches for studying soil microbes, p. 279-309. In J. van Elsas, J. Trevors, and E. Wellington (eds.) Modern Soil Microbiology, Marcel Dekker, Inc., New York 
    3. Hobbie, J., R. Daley, and S. Japer. 1977. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33, 1225-1228 
    4. Kim, J.-B. 2002. Molecular ecological analysis of the structural changes of bacterial community in forest soil stressed by fire. M.S. Thesis, Chungbuk National University, Cheongju, Korea 
    5. Lund, V. and J. Goksøyr. 1980. Effects of water fluctuations on microbial mass and activity in soil. Microb. Ecol. 6, 115-123 
    6. Martinez, M., J. Diaz-Ferrero, R. Marti, F. Broto-Puig, L. Comellas, and M. Rodriguez-Larena. 2000. Analysis of dioxin-like compounds in vegetation and soil samples burned in Catalan forest fire. Comparison with the corresponding unburned material. Chemosphere 41, 1927-1935 
    7. Madigan, M., J. Martinko, and J. Parker. 2003. Brock Biology of Microorganisms, p. A5-A13. Prentice Hall, Upper Saddle River 
    8. Manz, W., R. Amann, W. Ludwig, and M. Wagner. 1992. Phylogentic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: Problems and solutions. Syst. Appl. Micorbiol. 15, 593-600 
    9. Amann, R., W. Ludwig, and K. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143-169 
    10. Gabos, S., M. Ikonomou, D. Schopflocher, B. Fowler, J. White, E. Prepas, D. Prince, and W. Chen. 2001. Characteristics of PAHs, PCDD/Fs and PCBs in sediment following forest fires in Northern Alberta. Chemosphere. 43, 709-719 
    11. Stevenson, I.L. 1956. Some observations on the microbial activity in remoistened air-dried soils. Plant and Soil 8, 171-182 
    12. Ahn, T., J. Lee, D. Lee, and H. Song. 2002. Ecological monitoring of soil microbial community after forest fire, p. 144-175. In Proceedings of Symposium on Prevention of large forest fire and remediation of ecosystem. Korea Forest Research Institute, Seoul, Korea 
    13. Baath, E., A. Frostegard, T. Pennanen, and H. Fritze. 1995. Microbial community structure and pH response in relation to soil organic matter quality in wood-ash fertilized, clear-cut or burned coniferous forest soils. Soil Biol. Biochem. 27, 229-240 
    14. MacGregor, B. 1999. Molecular approaches to the study of aquatic microbial communities. Curr. Opin. Biotechnol. 10, 220-224 
    15. Harris, P., H. Schomberg, P. Banks, and J. Giddens. 1995. Burning, tillage and herbicide effects on the soil microflora in a wheatsoybean double-crop system. Soil Biol. Biochem. 27, 153-156 
    16. Hicks, R., R. A$\beta$mann, and D. Stahl. 1992. Dual staining of natural bacterioplankton with 4, 6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom level 16S rRNA sequences. Appl. Environ. Microbiol. 58, 2158-2163. 
    17. Trebesius, K., R. Amann, W. Ludwig, K. Muhlegger, and K. Schleifer. 1994. Identification of whole fixed bacterial cells with nonradioactive rRNA targeted transcript probes. Appl. Environ. Microbiol. 60, 3228-3235 
    18. Vasander, H. and T. Lindholm. 1985. Fire intensities and surface temperatures during prescribed burning. Silva Fennica. 19, 1-15 
    19. Vazquez, F., M. Acea, and T. Carballas. 1993. Soil microbial populations after wildfire. FEMS Microbiol. Ecol. 13, 93-104 
    20. Walstad, J., S. Radosevich, and D. Sandberg. 1990. Introduction to natural and prescribed fire in Pacific Northwest forests, p. 3-5. In J.D. Walstad, S.R. Radosevich, and D.V. Sandberg (eds.), Natural and Prescribed Fire in Pacific Northwest Forests Oregon State University Press, Corvallis. 
    21. Swift, L., K. Elliott, R. Ottmar, and R. Vihnanek. 1993. Site preparation burning to improve Southern Appalachian pine-hardwood stands: fire characteristics and soil erosion, moisture, and temperature. Can. J. Forest Res. 23, 2242-2254 
    22. Wackett, L. and C. Hershberger. 2001. Biocatalysis and Biodegradation : Microbial transformation of organic compounds, p. 39-69. ASM Press, Washington, D.C. 
    23. Acea, M. and T. Carballas. 1996. Changes in physiological groups of microorganisms in soil following wildfire. FEMS Microbiol. Ecol. 20, 33-39 
    24. Belkova, N.L., V.V. Dryukker, S.H. Hong, and T.S. Ahn. 2003. A study of the composition of the aquatic bacterial community of Lake Baikal by the in situ hybridization method. Microbiol. 72, 244-245 
    25. Sharma, G.D. 1981. Effect of fire on soil microorganisms in a Meghalaya pine forest. Folia Microbiol. 26, 321-327 
    26. Alfreider, A., J. Pernthaler, R. Amann, B. Sattler, F. Glockner, A. Wille, and R. Psenner. 1996. Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization. Appl. Environ. Microbiol. 62, 2138-2144 
    27. Glockner, F.O., B.M. Fuchs, and R. Amann. 1999. Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol. 65, 3721-3726 
    28. Neary, D., C. Klopatek, L. DeBano, and P. Ffolliott. 1999. Fire effects on belowground sustainability: a review and synthesis. Forest Ecol. Manage. 122, 51-71 

 저자의 다른 논문

  • Kim Ok-Sun (5)

    1. 2001 "Bacillus 속 세균을 검출하기 위한 Fluorescent In Situ Hybridization 방법의 개발" Korean journal of microbiology = 미생물학회지 37 (3): 204~208    
    2. 2001 "B3 공법을 사용하는 하수종말처리장에서 Bacillus 속 세균의 변화" Korean journal of microbiology = 미생물학회지 37 (3): 209~213    
    3. 2002 "해빙기 바이칼호에서 부유세균과 Aggregates에 부착한 세균의 군집구조" Korean journal of microbiology = 미생물학회지 38 (3): 192~197    
    4. 2002 "팔당호에 설치된 인공식물섬에서의 세균 수와 체외효소 활성도의 변화" 한국육수학회지 = Korean journal of limnology 35 (4): 266~272    
    5. 2004 "Monitoring of Soil Bacterial Community and Some Inoculated Bacteria After Prescribed Fire in Microcosm" The journal of microbiology 42 (4): 285~291    
  • Yoo Jae-Jun (4)

  • Lee Dong-Hun (1)

  • 안태석 (45)

  • Song, Hong-Gyu (45)

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기