본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Korean journal of crop science = 韓國作物學會誌 v.49 no.5, 2004년, pp.394 - 406   피인용횟수: 1
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Selection of the Most Sensitive Waveband Reflectance for Normalized Difference Vegetation Index Calculation to Predict Rice Crop Growth and Grain Yield

Nguyen Hung The    (Department of Plant Science, College of Agriculture and Life Science, Seoul National University   ); Lee Byun Woo    (Department of Plant Science, College of Agriculture and Life Science, Seoul National University  );
  • 초록

    A split-plot designed experiment including four rice varieties and 10 nitrogen levels was conducted in 2003 at the Experimental Farm of Seoul National University, Suwon, Korea. Before heading, hyperspectral canopy reflectance (300-1100nm with 1.55nm step) and nine crop variables such as shoot fresh weight (SFW), leaf area index, leaf dry weight, shoot dry weight, leaf N concentration, shoot N concentration, leaf N density, shoot N density and N nutrition index were measured at 54 and 72 days after transplanting. Grain yield, total number of spikelets, number of filled spikelets and 1000-grain weight were measured at harvest. 14,635 narrow-band NDVIs as combinations of reflectances at wavelength ${\lambda}l\;and\;{\lambda}2$ were correlated to the nine crop variables. One NDVI with the highest correlation coefficient with a given crop variable was selected as the NDVI of the best fit for this crop variable. As expected, models to predict crop variables before heading using the NDVI of the best fit had higher $r^2$ (>10\%)$ than those using common broad- band NDVI red or NDVI green. The models with the narrow-band NDVI of the best fit overcame broad- band NDVI saturation at high LAI values as frequently reported. Models using NDVIs of the best fit at booting showed higher predictive capacity for yield and yield component than models using crop variables.


  • 주제어

    Remote sensing .   Hyperspectral reflectance .   canopy .   nitrogen .   rice .   NDVI .   narrow band.  

  • 참고문헌 (21)

    1. Bausch, W. C., D. M. Lund, and M. C. Blue. 1990 Robotic Data Acquisition of Directional Reflectance Factors. Remote Sens Environ 30 159-168 
    2. Cassanova, D , G. F Epema, and J. Goudriaan. 1998. Monitoring rice reflectance at field level for estimating biomass and LAI. Field Crops Res 55 : 83-92 
    3. Cui, R X and B W Lee. 2002. Spikelet number estimation model using nitrogen nutrition status and biomass at panicle initiation and heading stage of rice. Korean J. Crop Sci. 47 : 390-394     
    4. Duggin, M J 1980 The field measurement of reflectance factors Photogram Eng Remote Sens. 46. 643-647 
    5. Hinzman, L. D, M E Bauer, and C. S. T Daughtry. 1986 Effects of nitrogen fertilization on growth and reflectance characteristics of winter wheat. Remote Sens Environ 19 47-61 
    6. Huete, A R. 1988. A soil-adjusted vegetation index (SAVI) Remote Sens. Environ 25 : 295-309 
    7. Ntanos, D. A. and S. D Koutroubas. 2002. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions. Field Crops Res 74 93-101 
    8. Thenkabail, P. S., R B Smith, and E D. Pauw 2000. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics Remote Sens Environ. 71. 158-182 
    9. Yoder B J. and R E P. Crosby. 1995. Predicting nitrogen and chlorophyll content and concentrations from reflectance spec.tra (400-2500 nm) at leaf and canopy scales. Remote Sens Environ. 53 : 199-211 
    10. Casanova, D., J Goudriaan, and A. D. Bosch 2000. Testing the performance of ORYZA1, an explanatory model for rice growth simulation, for Mediterranean conditions. Eur J Agron. 12 : 175-189 
    11. Haboudane, D., J. R. Miller, E Pattey, P. J. Zarco-Tejada, and I. strachan. 2004. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture Remote Sens Environ 90 337-352 
    12. McMurtrey, R. F, E W Chappella M S. Kim, and J J Meisinger. 1994. Distinguishing nitrogen fertilization levels in field corn (Zea mays L) WIth active induced fluoresing and passive reflectance measurements Remote Sens Environ 47 : 36-44 
    13. Reusch, R 2003 Optimisation of oblique-view remote sensing measurement of crop N-uptake under changing irradiance conditions In. Stafford, J and Werner A. (Eds ), Precision Agriculture. Wageningen Academic Publishers, Netherlands. pp 573-578 
    14. Shanahan, J F, J. S. Schepers, D. D Francis, G. E. Varvel, W. W. Wilhelm, J. M. Tringe, M. R. Schemmer, and D. J. Major. 2001. Use of remote imagery to estimate corn grain yield Agron. J. 93. 583-589 
    15. Cui, R X., M. H Kim, J H Kim, H S Nam, and B W.Lee. 2002. Determination of critical nitrogen concentration and dilution curve for rice growth. Korean J. Crop Sci 47 : 127-131     
    16. Graeff, S and W Claupein. 2003. Quantifying nitrogen status of corn (Zea mays L.) in the field by reflectance measurements. Eur. J Agron. 19. 611-618 
    17. Hansen, P. M. and J K. Schjoerring 2003. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens Environ 86 : 542-553 
    18. Takebe, M., T. Yoneyama, K. Inada, and T. Murakami. 1990. Spectral reflectance ratio of rice canopy for estimating crop nitrogen status Plant Soil 122 : 295-297 
    19. Elvidge, C. D. and Z. Chen 1995 Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sens Environ. 54 38-48 
    20. Tilley, D R, M. Ahmed, J. H Son, and H. Badrinarayanan. 2003. Hyperspectral reflectance of emergent macrophytes as an indicator of water column ammonia in an oligohaline, subtropical marsh. Ecol. Eng. (In press) 
    21. Diker, K. and W C. Bausch 2003. Potential use of nitrogen reflectance index to estimate plant parameters and yield of maize. Biosys. Eng. 85 : 437-447 
  • 이 논문을 인용한 문헌 (1)

    1. Kang, Seong-Soo ; Gong, Hyo-Young ; Jung, Hyun-Cheol ; Kim, Yi-Hyun ; Hong, Suk-Young ; Hong, Soon-Dal 2010. "Evaluation of Biomass and Nitrogen Status in Paddy Rice Using Ground-Based Remote Sensors" 韓國土壤肥料學會誌 = Korean journal of Soil Science and Fertilizer, 43(6): 954~961     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기