본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

The journal of microbiology v.43 no.2, 2005년, pp.183 - 190   피인용횟수: 1

Staphylococcus aureus Siderophore-Mediated Iron-Acquisition System Plays a Dominant and Essential Role in the Utilization of Transferrin-Bound Iron

Park Ra Young    (Research Center for Resistant Cells   ); Sun Hui Yu    (Research Center for Resistant Cells   ); Choi Mi Hwa    (Research Center for Resistant Cells   ); Bai Young Hoon    (Department of Biology, Chosun University   ); Shin Sung Heui    (Research Center for Resistant Cells  );
  • 초록

    Staphylococcus aureus is known to be capable of utilizing transferrin-bound iron, via both siderophore­and transferrin-binding protein (named IsdA)-mediated iron-acquisition systems. This study was designed in order to determine which iron-acquisition system plays the essential or dominant role with respect to the acquisition of iron from human transfenin, in the growth of S. aureus. Holotransferrin (HT) and partially iron-saturated transferrin (PT), but not apotransferrin (AT), were found to stimulate the growth of S. aureus. S. aureus consumed most of the transferrin-bound iron during the exponential growth phase. Extracellular proteases were not, however, involved in the liberation of iron from transferrin. Transferrin-binding to the washed whole cells via IsdA was not observed during the culture. The expression of IsdA was observed only in the deferrated media with AT, but not in the media supplemented with PT or HT. In contrast, siderophores were definitely produced in the deferrated media with PT and HT, as well as in the media supplemented with AT. The siderophores proved to have the ability to remove iron directly from transferrin, but the washed whole cells expressing IsdA did not. In the bioassay, the growth of S. aureus on transferrin-bound iron was stimulated by the siderophores alone. These results demonstrate that the siderophore-mediated iron-acquisition system plays a dominant and essential role in the uptake of iron from transferrin, whereas the IsdA-mediated iron-acquisition system may play only an ancillary role in the uptake of iron from transferrin.


  • 참고문헌 (43)

    1. Braun, V. and M. Barun. 2002. Active transport of iron and siderophore antibiotics. Curr. Opin. Microbiol. 5, 194-201 
    2. Crosa, J .H. 1997. Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol. Mol. Biol. Rev. 61, 319-336 
    3. Dale, S.E., A. Doherty-Kirby, G. Lajoie and D.E. Heinrichs. 2004. Role of siderophore biosynthesis in virulence of Staphylococcus aureus: Identification and characterization of genes involved in production of a siderophore. Infect. Immun. 72, 29-37 
    4. Lim, Y., S.H. Shin, S.I. Lee, I.S. Kim, and J.H. Rhee. 1998. Ironrepressibility of siderophore and transferrin-binding protein in Staphylococccus aureus. FEMS Microbiol. Lett. 163, 19-24 
    5. Lim, Y., S.Y. Cho, N.S. Cho, S.I. Lee, J.Y. Chung, C.H. Chung, and S.H. Shin. 2004. Oxygen stimulates the expression of ironrepressible high-affinity iron-uptake systems of Staphylococcus aureus-Application of CAS agar diffusion assay. Infection and Chemotherapy 36, 32-39 
    6. Lindsay, J.A. and T.V. Riley. 1994. Staphylococcal iron requirements, siderophore production, and iron-regulated protein expression. Infect. Immun. 62, 2309-2314 
    7. Modun, B.J., A. Cockayne, R. Finch, and P. Williams. 1998. The Staphylococcus aureus and Staphylococcus epidermidis transferrin-binding proteins are expressed in vivo during infection. Microbiology 144, 1005-1012 
    8. Modun, B., D. Kendall, and P. Williams. 1994. Staphylococci express a receptor for human transferrin: Identification of a 42-kilodalton cell wall transferrin-binding protein. Infect. Immun. 62, 3850-3858 
    9. Modun, B. and P. Williams. 1999. The staphylococcal transferrinbinding protein is a cell wall glyceraldehydes-3-phosphate dehydrogenase. Infect. Immun. 67, 1086-1092 
    10. Potempa, J., A. Dubin, G. Korzus, and J. Travis. 1988. Degradation of elastin by a cysteine proteinase from Staphylococcus aureus. J. Biol. Chem. 263, 2664-2667 
    11. Schwyn, B. and J.B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47-56 
    12. Sebulsky, M.T. and D.E. Heinrichs. 2001. Identification and characterization of fhuD1 and fhuD2, two genes involved in ironhydroxamate uptake in Staphylococcus aureus. J. Bacteriol. 183, 4994-5000 
    13. Sieradzki, K., R.B. Roberts, S.W. Haber, and A.Tomasz. 1999. The development of vancomycin resistance in a patient with methicillin- resistant Staphylococcus aureus infection. N. Engl. J. Med. 340, 517-523 
    14. Cabrera, G., A. Xiong, M. Uebel, V.K. Singh, and R.K. Jayaswal. 2001. Molecular characterization of the iron-hydroxamate uptake system in Staphylococcus aureus. Appl. Environ. Microbiol. 67, 1001-1003 
    15. Lim, Y., S.H. Shin, I.Y. Jang, J.H. Rhee, and I.S. Kim. 1998. A human transferrin-binding protein of Staphylococcus aureus is immunogenic in vivo and has an epitope in common with human transferrin receptor. FEMS Microbiol. Lett. 166, 225-230 
    16. Courcol, R.J., D. Trivier, M.C. Bissinger, G.R. Martin, and M.R. Brown. 1997. Siderophore production by Staphylococcus aureus and identification of iron-regulated proteins. Infect. Immun. 65, 1944-1948 
    17. Clarke, S.R., M.D. Wiltshire, and S.J. Foster. 2004. IsdA of Staphylococcus aureus is a broad spectrum, iron-regulated adhesion. Mol. Microbiol. 51, 1509-1519 
    18. Konetschny-Rapp, S., G. Jung, J. Meiwes, and H. Zahner. 1990. Staphyloferrin A: a structurally new siderophore from staphylococci. Eur. J. Biochem. 191, 65-74 
    19. Rybak, M.J. and R.L. Akins. 2001. Emergence of methicillin-resistant Staphylococcus aureus with intermediate glycopeptide resistance: clinical significance and treatment options. Drugs 61, 1-7 
    20. Sebulsky, M.T., D. Hohnstein, M.D. Hunter, and D.E. Heinrichs. 2000. Identification and characterization of a membrane permease involved in iron-hydroxamate transport in Staphylococcus aureus. J. Bacteriol. 182, 4394-4400 
    21. Dryla, A., D. Gelbmann, A. Von Gabain, and E. Nagy. 2003. Identification of a novel iron regulated staphylococcal surface protein with haptoglobulin-hemoglobin binding activity. Mol. Microbiol. 49, 37-53 
    22. Leong, S.A. and J.B. Neilands. 1982. Siderophore production by phytopathogenic microbial species. Arch. Biochem. Biophys. 218, 351-359 
    23. Trivier, D. and R.J. Courcol. 1996. Iron depletion and virulence in Staphylococcus aureus. FEMS Microbiol. Lett. 141, 117-127 
    24. Lindsay, J.A., T.V. Riley, and B.J. Mee. 1995. Staphylococcus aureus but not Staphylococcus epidermidis can acquire iron from transferrin. Microbiology 141, 197-203 
    25. Martinaho, S., L. von Bonsdorff, A. Rouhiainen, M. Lonnroth and J. Parkkinen. 2001. Dependence of Staphylococcus epidermidis on non transferrin-bound iron for growth. FEMS Microbiol. Lett. 196, 177-182 
    26. Okuzo, N., T. Akiyama, S. Miyoshi, S. Shinoda, and S. Yamamoto. 1996. Involvement of vulnibactin and exocellular protease in utilization of transferrin-and lactoferrin-bound iron by Vibrio vulnificus. Microbiol. Immunol. 40, 595-598 
    27. Shin, S.H., Y. Lim, S.E. Lee, N.W. Yang, and J.H. Rhee. 2001. CAS agar diffusion assay for the measurement of siderophores in biological fluids. J. Microbiol. Methods 44, 89-95 
    28. Mazmanian, S.K., E.P. Skaar, A.H. Gaspar, M. Humayun, P. Gornicki, J. Jelenska, A. Joachmiak, D.M. Missiakas, and O. Schneewind. 2003. Passage of heme-iron across the envelope of Staphylococcus aureus. Science 299, 906-909 
    29. Morrissey, J.A., A. Cockayne, P.J. Hill, and P. Williams. 2000. Molecular cloning and analysis of a putative siderophore ABC transporter from Staphylococcus aureus. Infect. Immun. 68, 6281-6288 
    30. Park, R.Y., H.Y. Sun, M.H. Choi, Y.H. Bae, and S.H. Shin. 2005. Growth of Staphylococcus aureus with defective siderophore production in human peritoneal dialysate solution. J. Microbiol. 43, 54-61 
    31. Conrad, M.E. 2001. Iron: seminal publications of the twentieth century-transferrin. J. Tra. Ele. Exp. Med. 14, 115-117 
    32. Makey, D.G. and U.S. Seal. 1988. The detection of four molecular forms of human transferrin during the iron binding process. Biochem. Biophys. Acta 453, 250-256 
    33. Ratledge, C. and L. Dover. 2000. Iron metabolism in pathogenic bacteria, Ann. Rev. Microbiol. 54, 881-941 
    34. Brock, J.H., P.H. Williams, J. Liceaga, and K.G. Woolridge. 1991. Relative availability of transferrin-bound iron and cell-driven iron to aerobactin-producing and enterochelin-producing strains of Escherichia coli and to other microorganisms. Infect. Immun. 59, 3185-3190 
    35. Brown, J.S. and D.W. Holden. 2002. Iron acquisition by Gram-positive bacterial pathogens. Microbes Infect. 4, 1149-1156 
    36. Emori, T.G and R.P. Gaynes. 1993. An overview of nosocomial infections, including the role of the microbiology laboratory. Clin. Microbiol. Rev. 6, 428-442 
    37. Modun, B., R.W. Evans, C.L. Joannou, and P. Williams. 1998. Receptor-mediated recognition and uptake of iron from human transferrin by Staphylococcus aureus and Staphylococcus epidermidis. Infect. Immun. 66, 3591-3596 
    38. Taylor, J.M. and Heinrichs, D.E. (2002) Transferrin binding in Staphylococcus aureus: involvement of a cell wall-anchored protein. Mol. Microbiol. 43, 1603-1614 
    39. Bullen, J., E. Griffiths, H. Rogers, and G. Ward. 2002. Sepsis: the critical role of iron. Microbes Infect. 2, 409-415 
    40. Andrews, S.C., A.K. Robinson, and F. Rodriguez-Quinones. 2003. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27, 215-237 
    41. Drechsel, H., S. Freund, G. Nicholson, H. Haag, O. Jung, H. Zahner, and G. Jung. 1993. Purification and chemical characterization of staphyloferrin B, a hydrophilic siderophore from staphylococci. Biometals 6, 185-192 
    42. Skaar, E.P. and O. Schneewind. 2004. Iron-regulated surface determinants (Isd) of Staphylococcus aureus: stealing iron from heme. Microbes Infect. 6, 390-397 
    43. Xiong, A., V.K. Singh, G. Cabrera, and R.K. Jayaswal. 2000. Molecular characterization of the ferric-uptake regulator, Fur, from Staphylococcus aureus. Microbiology 146, 659-668 
  • 이 논문을 인용한 문헌 (1)

    1. 2006. "" The journal of microbiology, 44(1): 54~63     

 저자의 다른 논문

  • 배영훈 (5)

    1. 1996 "익모초(Leonurus sibiricus)가 자궁운동에 미치는 영향" 韓國家畜繁殖學會誌 = Korean journal of animal reproduction 19 (4): 245~250    
    2. 1998 "임신쥐에 대한 옥시토신의 반응" 韓國家畜繁殖學會誌 = Korean journal of animal reproduction 22 (1): 61~66    
    3. 2002 "토끼의 관절병증에 미치는 알긴산올리고당의 치료효과" 大韓獸醫學會誌 = Korean journal of veterinary research 42 (2): 153~162    
    4. 2005 "Growth of Stahylococcus aureus with Defective Siderophore Production in Human Peritoneal Dialysate Solution" The journal of microbiology 43 (1): 54~61    
    5. 2005 "Utilization of Transferrin-Bound Iron by Medically Important Staphylococcal Species" Journal of bacteriology and virology : JBV 35 (2): 103~111    

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기