본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of microbiology and biotechnology v.15 no.2, 2005년, pp.281 - 286   피인용횟수: 4

Electrochemical Regeneration of FAD by Catalytic Electrode Without Electron Mediator and Biochemical Reducing Power

JEON SUNG JIN    (Department of Biological Engineering, Seokyeong University   ); SHIN IN HO    (Department of Biological Engineering, Seokyeong University   ); SANG BYUNG IN    (Division of Water Environment and Remediation, KIST   ); PARK DOO HYUN    (Department of Biological Engineering, Seokyeong University  );
  • 초록

    We created a new graphite-Cu(II) electrode and found that the electrode could catalyze FADH $_2$ oxidation and FAD reduction coupled to electricity production and consumption, respectively. In a fuel cell with graphite-Cu(II) anode and graphite-Fe(III) cathode, the electricity was produced by coupling to the spontaneous oxidation of FADH $_2$ Fumarate and xylose were not produced from the enzymatic oxidation of succinate and xylitol without FAD, respectively, but produced with FAD. The production of fumarate and xylose in the reactor with FAD electrochemically regenerated was maximally 2- 5 times higher than that in the reactor with FAD. By using this new electrode with catalytic function, a bioelectrocatalysts can be engineered; namely, oxidoreductase (e.g., lactate dehydrogenase) and FAD can function for biotransformation without an electron mediator and second oxidoreductase for cofactors recycling.


  • 참고문헌 (24)

    1. Chenault, H. K. and G. M. Whitesides. 1984. Regeneration of nicotiamide cofactors for use in organic synthesis. Appl. Biochem. Biotechnol. 14: 147-197 
    2. Gisi, M. R. and L. Xun. 2003. Characterization of chlorophenol 4-monooxygenase and NADH:flavin adenine dinucleotide oxidoreductase of Burkholderia cepucia AC 1100. J. Bacteriol, 185: 2786- 2792 
    3. Gottschalk. G. 1986. Bacterial Metabolism, pp. 149- 150. Second Ed., Springer-Verlag, New York, U.S.A 
    4. Lee, J. W., A. Goel, M. M. Ataai, and M. M. Domach. 2002. Flux regulation patterns and energy audit of E. coli B/r and K-12. J. Microbiol. Biotechnol. 12: 258- 267 
    5. Miyawaki, O. and T. Yano. 1992. Electrochemical biorcactor with regeneration of $NAD^{+}$ by rotating graphite disk electrode with PMS adsorbed. Enzvme Microbiol. Technol. 14: 474-478 
    6. Tanner. A. and D. J. Hopper. 2000. Conversion of 4-hydroxyacetophenone into 4-phenyl acetate by a flavin adenine dinucleotide-containing Baeye- Villiger-type monooxygenase. J. Bacteriol. 182: 6565- 6569 
    7. Walfridsson, M., J. Hallborn, M. Penttila, S. Keranen, and B. H.-Hagerdal. 1995. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl. Environ. Microbiol. 61: 4148-4190 
    8. Cecchini, G., H. Sices, I. Schroder, and R. P. Gunsalus. 1995. Aerobic inactivation of fumarate reductase from Escherichia coli by mutation of the [3Fe-4S]-quinone binding domain. J. Bacteriol. 177: 4587-4592. 
    9. Moreno, C., C. Costa, I. Moura. J. Le Gall. M. Y. Liu, W. J. Payene, C. van Duk, and J. J. G. Moura. 1993. Electrochemical studies of the hexaheme nitrite reductase from Desulfovibrio desulfuricans ATCC 27774. Eur. J. Biochem. 212: 79- 86 
    10. Shin, I. H., S. J. Jeon, and D. H. Park. 2004. Catalytic oxidoreduction of pyruvatellactate and acetate/ethanol coupled to electrochemical oxidoreduction of $NAD^{+}/NADH$. J. Microbiol. Biotechnol. 14: 540- 546 
    11. Sugimoto. M., M. Tanabe, M. Hataya, S. Enokibara, J. A. Duine, and F. Kawai. 2001. The first step in polyethylene glycol degradation by Sphingomonads proceeds via a flavoprotein alcohol dehydrogenase containing flavin adenine dinucleotide. J. Bacteriol. 183: 6694- 6698 
    12. Fang, J.-M. and C. H. Lin. 1995. Enzymes in organic synthesis: Oxidoreductions. J. Chem. Soc. Perkin Trans. 1: 967-978 
    13. Lee. Y. J., K. H. Cho, and Y. J. Kim. 2003. The membranebound NADH:ubiquinone oxidoreductase in the aerobic respiratory chain of marine bacterium Pseudomonas nautical. J. Microbiol. Biotechnol. 13: 225- 229 
    14. Wong. C.-H. and G. M. Whitesides. 1994. Enzymes in Synthetic Organic Chemistrv. Elsevier Science Ltd., Oxford 
    15. Lee, W. J., M.-D. Kim, M.-S. Yoo, Y.-W. Ryu, and J.-H. Seo. 2003. Effects of xylose reductase activity on xylitol production in two-substrate fermentation of recombinant Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 13: 725-730 
    16. Li, K., F. Xu, and K.-E. L. Eriksson 1999. Comparison of fungal Iaccases and redox mediators in oxidation of a nonphenolic lignin model compound. Appl. Environ. Microbiol. 65: 2654- 2660 
    17. Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403- 2410 
    18. Verho. R., J. Londesborough, M. Penttila, and P. Richard. 2003. Engineering redox cofactor regeneration for improved pentose fermentation of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 69: 5892- 5897 
    19. Park. D. H. and Y. K. Park. 2001. Bioelectrochmical denitrification by Pseudomonas sp. or anaerobic bacterial consortium. J. Microbiol. Biotechnol, 11: 406- 411 
    20. Bourdillon, C., R. Lortie, and J. M. Laval. 1988. Gluconic acid production by an immobilized glucose oxidase reactor with electrochemical regeneration of an artificial electron acceptor. Biotechnol. Bioengineering 31: 553- 558 
    21. Park, J. Y., S. J. Park, S. J. Nam, Y. L. Ha, and J. H. Kim. 2003. Cloning and characterization of the L-Iactate dehydrogenase gene (ldhL) from Lactobacillus reuteri ATCC 55739. J. Microbiol. Biotechnol. 11: 716-721 
    22. Gorlatova, N., M. Tchorzewski, T. Kurihara, K. Soda, and N. Esaki. 1998. Purification, characterization, and mechanism of a flavin mononucleotide-dependent 2-nitropropane dioxygenase from Neurospora crassa. Appl. Environ. Microbiol. 64: 1029- 1033 
    23. Xun, L. and E. R. Sandvik. 2000. Characterization of 4hydroxyphenylacetate 3-hydroxylase of Escherichia coli as a reduced flavin adenine dinucleotide-utilizing monooxygenase. Appl. Environ. Microbiol. 66: 481- 486 
    24. Eppink, M. H. M., S. A. Boeren, J. Vervoort, and W. J, H. van Berkel. 1997. Purification and properties of 4hydroxybenzoate 1-hydroxylase (decarboxylating), a novel flavin adenine dinucleotide-dependent monooxygenase from Candida parapsilosis CBS604. J. Bacteriol. 179: 6680-6687 
  • 이 논문을 인용한 문헌 (4)

    1. 2006. "" Journal of microbiology and biotechnology, 16(9): 1448~1452     
    2. 2007. "" Journal of microbiology and biotechnology, 17(9): 1579~1584     
    3. 2007. "" Journal of microbiology and biotechnology, 17(2): 218~225     
    4. 2007. "" Journal of microbiology and biotechnology, 17(3): 445~453     

 저자의 다른 논문

  • Jeon, Sung-Jin (1)

    1. 2004 "Catalytic Oxidoreduction of Pyruvate/Lactate and Acetaldehyde/Ethanol Coupled to Electrochemical Oxidoreduction of $NAD^+$/NADH" Journal of microbiology and biotechnology 14 (3): 540~546    
  • Shin, In-Ho (1)

  • Park, Doo-Hyun (46)

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기