본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Genetically Optimized Hybrid Fuzzy Neural Networks Based on Linear Fuzzy Inference Rules

Oh Sung-Kwun    (Department of Electrical Engineering, The University of Suwon   ); Park Byoung-Jun    (Department of Electrical Electronic & Information Engineering, Wonkwang University   ); Kim Hyun-Ki    (Department of Electrical Engineering, The University of Suwon  );
  • 초록

    In this study, we introduce an advanced architecture of genetically optimized Hybrid Fuzzy Neural Networks (gHFNN) and develop a comprehensive design methodology supporting their construction. A series of numeric experiments is included to illustrate the performance of the networks. The construction of gHFNN exploits fundamental technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms (GAs). The architecture of the gHFNNs results from a synergistic usage of the genetic optimization-driven hybrid system generated by combining Fuzzy Neural Networks (FNN) with Polynomial Neural Networks (PNN). In this tandem, a FNN supports the formation of the premise part of the rule-based structure of the gHFNN. The consequence part of the gHFNN is designed using PNNs. We distinguish between two types of the linear fuzzy inference rule-based FNN structures showing how this taxonomy depends upon the type of a fuzzy partition of input variables. As to the consequence part of the gHFNN, the development of the PNN dwells on two general optimization mechanisms: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the gHFNN, the models are experimented with a representative numerical example. A comparative analysis demonstrates that the proposed gHFNN come with higher accuracy as well as superb predictive capabilities when comparing with other neurofuzzy models.


  • 주제어

    Genetically optimized hybrid fuzzy neural networks .   computational intelligence .   linear fuzzy inference rule-based fuzzy neural networks .   genetically optimized polynomial neural networks .   design procedure.  

  • 참고문헌 (28)

    1. S.-K. Oh and W. Pedrycz, 'Fuzzy identification by means of auto-tuning algorithm and its application to nonlinear systems,' Fuzzy Sets and Systems, vol. 115, no. 2, pp. 205-230, 2000 
    2. B.-J. Park, W. Pedrycz, and S.-K. Oh, 'Identification of fuzzy models with the aid of evolutionary data granulation,' IEE Proceedings -Control Theory and Application, vol. 148, no. 5, pp. 406-418, 2001 
    3. S.-K. Oh, W. Pedrycz, and B.-J. Park, 'Hybrid identification of fuzzy rule-based models,' International Journal of Intelligent Systems, vol. 17, no. 1, pp. 77-103, 2002 
    4. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer- Verlag, Berlin Heidelberg, 1996 
    5. S.-K. Oh and W. Pedrycz, 'The design of selforganizing polynomial neural networks,' Information Sciences, vol. 141, no. 3-4, pp. 237- 258, 2002 
    6. T. Ohtani, H. Ichihashi, T. Miyoshi, and K. Nagasaka, 'Orthogonal and successive projection methods for the learning of neurofuzzy GMDH,' Information Sciences, vol. 110, pp. 5-24, 1998 
    7. G. E. P. Box and G. M. Jenkins, Time Series Analysis, Forecasting, and Control, 2nd edition Holden-Day, SanFransisco, 1976 
    8. E. Kim, H. Lee, M. Park, and M. Park, 'A simply identified Sugeno-type fuzzy model via double clustering,' Information Sciences, vol. 110, pp. 25-39. 1998 
    9. Y. Lin and G. A. Cunningham III, 'A new approach to fuzzy-neural modeling,' IEEE Trans. on Fuzzy Systems, vol. 3, no. 2, pp. 190-197, 1997 
    10. S.-K. Oh, W. Pedrycz, and B.-J. Park, 'Polynomial neural networks architecture: analysis and design,' Computers and Electrical Engineering, vol. 29, no. 6, pp. 653-725, 2003 
    11. S.-K. Oh, W. Pedrycz, and H.-S. Park, 'Hybrid identification in fuzzy-neural networks,' Fuzzy Sets and Systems, vol. 138, no. 2, pp. 399-426, 2003 
    12. H.-S. Park and S.-K Oh, 'Multi-FNN identification by means of HCM clustering and its optimization using genetic algorithms,' Journal of Fuzzy Logic and Intelligent Systems(in Korean), vol. 10, no. 5, pp. 487-496, 2000 
    13. L. Magdalena, O. Cordon, F. Gomide, F. Herrera, and F. Hoffmann, 'Ten years of genetic fuzzy systems: current framework and new trends,' Fuzzy Sets and Systems, vol. 141, no. 1, pp. 5-31, 2004 
    14. J. H. Holland, Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbour, 1975 
    15. S.-K. Oh, Computational Intelligence by Programming focused on Fuzzy, Neural Networks, and Genetic Algorithms (in Korean), Naeha, 2002 
    16. T. Ohtani, H. Ichihashi, T. Miyoshi, and K. Nagasaka, 'Structural learning with M-apoptosis in neurofuzzy GMHD,' Proc. of the 7th IEEE Iinternational Conference on Fuzzy Systems, pp. 1265-1270, 1998 
    17. S.-K. Oh, K.-C. Yoon, and H.-K. Kim, 'The design of optimal fuzzy-neural networks structure by means of GA and an aggregate weighted performance index,' Journal of Control, Automation and Systems Engineering(in Korean), vol. 6, no. 3, pp. 273-283, 2000 
    18. A. G. Ivahnenko, 'The group method of data handling: a rival of method of stochastic approximation,' Soviet Automatic Control, vol. 13, no. 3, pp. 43-55, 1968 
    19. T. Yamakawa, 'A new effective learning algorithm for a neo fuzzy neuron model,' Proc. of 5th IFSA World Conference, pp. 1017-1020, 1993 
    20. H. Ichihashi and K. Nagasaka, 'Differential minimum bias criterion for neuro-fuzzy GMDH,' Proc. of 3rd International Conference on Fuzzy Logic, Neural Nets and Soft Computing IIZUKA'94, pp. 171-172, 1994 
    21. B.-J. Park and S.-K. Oh, 'The analysis and design of advanced neurofuzzy polynomial networks,' Journal of the Institute of Electronics Engineers of Korea (in Korean), vol. 39-CI, no. 3, pp. 18-31, 2002 
    22. S.-K. Oh, C.-S. Park, and B.-J. Park, 'On-line modeling of nonlinear process systems using the adaptive fuzzy-neural networks,' The Transactions of the Korean Institute of Electrical Engineers (in Korean), vol. 48A, no. 10, pp. 1293-1302, 1999 
    23. B.-J. Park, S.-K. Oh, T.-C. Ahn, and H.-K. Kim, 'Optimization of fuzzy systems by means of GA and weighting factor,' The Transactions of the Korean Institute of Electrical Engineers (in Korean), vol. 48A, no. 6, pp. 789-799, June 1999 
    24. D. E. Goldberg, Genetic Algorithms in Search, Optimization & Machine Learning, Addison- Wesley, 1989 
    25. B.-J. Park, S.-K. Oh, and S.-W. Jang, 'The design of adaptive fuzzy polynomial neural networks architectures based on fuzzy neural networks and self-organizing networks,' Journal of Control, Automation and Systems Engineering(in Korean), vol. 8, no. 2, pp.126-135, 2002 
    26. W. Pedrycz and J. F. Peters, Computational Intelligence and Software Engineering, World Scientific, Singapore, 1998 
    27. S.-K. Oh, W. Pedrycz, and B.-J. Park, 'Selforganizing neurofuzzy networks based on evolutionary fuzzy granulation,' IEEE Trans. on Systems, Man and Cybernetics-A, vol. 33, no. 2, pp. 271-277, 2003 
    28. K. S. Narendra and K. Parthasarathy, 'Gradient methods for the optimization of dynamical systems containing neural networks,' IEEE Trans. on Neural Networks, vol. 2, no. 2, pp. 252-262, March 1991 

 저자의 다른 논문

  • Oh, Sung-Kwun (57)

    1. 2005 "유전자 알고리즘 기반 최적 다항식 뉴럴네트워크 연구 및 비선형 공정으로의 응용" 퍼지 및 지능시스템학회 논문지 = Journal of fuzzy logic and intelligent systems 15 (7): 846~851    
    2. 2005 "Genetically Optimized Hybrid Fuzzy Set-based Polynomial Neural Networks with Polynomial and Fuzzy Polynomial Neurons" International journal of fuzzy logic and intelligent systems : IJFIS 5 (4): 327~332    
    3. 2005 "정보 Granules에 의한 퍼지 관계 기반 퍼지 추론 시스템의 최적 설계" 퍼지 및 지능시스템학회 논문지 = Journal of fuzzy logic and intelligent systems 15 (1): 81~86    
    4. 2005 "퍼지관계와 유전자 알고리즘에 기반한 진화론적 최적 퍼지다항식 뉴럴네트워크: 해석과 설계" 퍼지 및 지능시스템학회 논문지 = Journal of fuzzy logic and intelligent systems 15 (2): 236~244    
    5. 2005 "Information Granulation-based Fuzzy Inference Systems by Means of Genetic Optimization and Polynomial Fuzzy Inference Method" International journal of fuzzy logic and intelligent systems : IJFIS 5 (3): 253~258    
    6. 2006 "정보 입자화와 유전자 알고리즘에 기반한 자기구성 퍼지 다항식 뉴럴네트워크의 새로운 접근" 전기학회논문지. The transactions of the Korean Institute of Electrical Engineers. D / D, 시스템 및 제어부문 55 (2): 45~51    
    7. 2006 "Genetically Optimized Fuzzy Polynomial Neural Network and Its Application to Multi-variable Software Process" International journal of fuzzy logic and intelligent systems : IJFIS 6 (1): 33~38    
    8. 2006 "PSO의 특징과 차원성에 관한 비교연구" 제어·자동화·시스템공학 논문지 = Journal of control, automation and systems engineering 12 (4): 328~338    
    9. 2006 "정보 입자기반 연속전인 최적화를 통한 자기구성 퍼지 다항식 뉴럴네트워크 : 설계와 해석" 전기학회논문지. The transactions of the Korean Institute of Electrical Engineers. D / D, 시스템 및 제어부문 55 (6): 264~273    
    10. 2007 "다중 증발기를 갖는 에어컨시스템에 대한 최적화된 Multi-Fuzzy 제어기 설계" 퍼지 및 지능시스템학회 논문지 = Journal of fuzzy logic and intelligent systems 17 (1): 7~12    
  • Kim, Hyun-Ki (25)

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
  • 제어로봇시스템학회 : 저널
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기