본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Neural Network Active Control of Structures with Earthquake Excitation

Cho Hyun Cheol    (Department of Electrical Engineering, University of Nevada-Reno   ); Fadali M. Sami    (Department of Electrical Engineering, University of Nevada-Reno   ); Saiidi M. Saiid    (Department of Civil Engineering, University of Nevada-Reno   ); Lee Kwon Soon    (Division of Electrical, Electronic, and Computer Engineering, Dong-A University  );
  • 초록

    This paper presents a new neural network control for nonlinear bridge systems with earthquake excitation. We design multi-layer neural network controllers with a single hidden layer. The selection of an optimal number of neurons in the hidden layer is an important design step for control performance. To select an optimal number of hidden neurons, we progressively add one hidden neuron and observe the change in a performance measure given by the weighted sum of the system error and the control force. The number of hidden neurons which minimizes the performance measure is selected for implementation. A neural network was trained for mitigating vibrations of bridge systems caused by El Centro earthquake. We applied the proposed control approach to a single-degree-of-freedom (SDOF) and a two-degree-of-freedom (TDOF) bridge system. We assessed the robustness of the control system using randomly generated earthquake excitations which were not used in training the neural network. Our results show that the neural network controller drastically mitigates the effect of the disturbance.


  • 주제어

    Neural networks .   optimal neuron number .   bridge control .   earthquake engineering.  

  • 참고문헌 (16)

    1. T. T. Soong, Active Structural Control: Theory and Practice, Addison-Wesley, 1990 
    2. J. Sietsma and R. Dow, 'Neural net pruning-why and how,' Proc. of IEEE International Conference on Neural Networks, vol. 1, pp. 325- 333, 1988 
    3. M. S. Fadali and K. E. Zayyat, 'Disturbance rejection control of bridge response to earthquake excitation,' Earthquake Engineering and Structural Dynamics, vol. 25, pp. 291-302, 1996 
    4. G. Mirchandani and W. Cao, 'On hidden nodes for neural nets,' IEEE Trans. on Circuits and Systems, vol. 36, no. 5, pp. 661-664, 1989 
    5. S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, 1999 
    6. J. Ghaboussi and A. Joghataie, 'Active control structures using neural networks,' Journal of Engineering Mechanics, vol. 121, no. 4, pp. 555- 567, 1995 
    7. H. C. Cho, 'A study on vibration control of building structure using neural network predictive control,' Master Thesis, Dong-A University, Korea, 1999 
    8. A. Tani, H. Kawamura, and S. Ryu, 'Intelligent fuzzy optimal control of building structures,' Journal of Engineering Structures, vol. 20, no. 3, pp. 184-192, 1998 
    9. K. Yoshida, S. Kang, and T. Kim, 'LQG control and $H_\infty$ control of vibration isolation for multidegree- of-freedom systems,' Proc. of First World Conference on Structural Control, CA, pp. TP4-43-52, 1994 
    10. J.-J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, 1991 
    11. M. Saiidi, 'Hysteresis models for reinforced concrete,' Journal of the Structural Division of ASCE, vol. 108, no. ST5, pp. 1077-1087, 1982 
    12. M. Saerens and A. Soquet, 'Neural controller based on back-propagation algorithm,' IEE Proc.-F, vol. 138, no. 1, pp. 55-62, 1991 
    13. S. Kung and J. Hwang, 'An algebraic projection analysis for optimal hidden units size and learning rates in backpropagation learning,' Technical Report, Princeton University, 1987 
    14. K. G. Mehrotra, C. K. Mohan, and S. Ranka, 'Bound on the number of samples needed for neural learning,' IEEE Trans. on Neural Networks, vol. 2, no. 6, pp. 548-558, 1991 
    15. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison- Wesley, 1989 
    16. R. P. Lippmann, 'An introduction to computing with neural nets,' IEEE ASSP Magazine, vol. 4, no. 2, pp. 4-22, 1987 

 저자의 다른 논문

  • Cho Hyun Cheol (1)

    1. 2006 "Neural Robust Control for Perturbed Crane Systems" Journal of mechanical science and technology 20 (5): 591~601    

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
  • 제어로봇시스템학회 : 저널
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기