본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Biomolecular Strategies for Preparation of High Quality Surimi-Based Products

Nakamura Soichiro    (Department of Bioscience and Technology, Faculty of Agricultural Sciences, Shinshu University   ); Ogawa Masahiro    (Department of Biochemistry and Food Science, Faculty of Agricultural, Kagawa University  );
  • 초록

    There exist two interesting phenomena in making seafood products from surimi. When salted surimi is kept at a constant low temperature $(4\~40^{\circ}C)$ , its rheological properties change from sol to gel, which is called 'setting'. Seafood processors can exploit changes that occur during setting in preparation of surimibased products, because heating at high temperatures, after the pre-heating during the setting process, enhances the gel-strength of salted surimi. Contrarily, when salted surimi or low-temperature set gel is heated at moderate temperatures $(50\~70^{\circ}C)$ , a deterioration of gel is observed. The phenomenon is termed 'modori'. In the modori temperature range, heat-stable cysteine proteinases such as cathepsin B, H, Land L-Iike hydrolyze the myosins responsible for gel-formation, resulting in gel weakening modori. This article reviews molecular events occurring during gel setting that improve the quality of surimi-based products, and inhibition of modori by applying proteinase inhibitors. Application of recombinant protein technology to surimi-based products is introduced and its prospects for practical use are discussed.


  • 주제어

    surimi .   heat-induced protein gel .   kamaboko .   modori .   gel-softening, myosin .   cystatin C .   glycosylation.  

  • 참고문헌 (64)

    1. An H, Peters MY, Seymour TA. 1996. Roles of endogeneous enzymes in surimi gelation. Trends Food Sci Technol 7: 321-326 
    2. Watabe S, Hirayama Y, Nakaya M, Kakinuma M, Guo X-F, Kanoh S, Chaen S, Ooi T. 1998. Carp expresses fast skeletal myosin isoforms with altered motor functions and structural stabilities to compensate for changes in environmental temperature. J Them Biol 22: 375-390 
    3. Ojima T, Kawashima N, Inoue A, Amauchi A, Togashi M, Watabe S, Nishita K. 1998. Determination of primary structure of heavy meromyosin region of walleye pollack myosin heavy chain by cDNA cloning. Fish Sci 64: 812-819 
    4. Kawabata R, Kanzawa N, Ogawa M, Tsuchiya T. 2000. Determination of primary structure of amberjack myosin heavy chain and its relationship with structural stability of various fish myosin rods. Fish Physiol Biochem 23: 283-294 
    5. Ogawa M, Tarmya T, Tuschiya T. 1994. Structural changes of carp yosin during heating. Fish Sci 60: 723-727 
    6. Hashimoto A, Kobayashi A, Arai K. 1982. Thermostability of fish myofibrillar Ca-ATPase and adaptation to environmental temperature. Nippon Suisan Gakkaishi 48: 671-684 
    7. Ogawa M, Tamiya T, Tsuchiya T. 1996. $\alpha$-Helical structure of fish actomyosin changes during storage. J Agric Food Chem 44: 2944-2925 
    8. Rodgers ME, Karr T, Biedermann K, Ueno H, Harrington WF. 1987. Thermal stability of myosin rod from various species. Biochem 26: 8703-8708 
    9. Kakinuma M, Nakaya M, Hatanaka A, Hirayama Y, Watabe S, Maeda K, Ooi T, Suzuki S. 1998. Thermal unfolding of three acclimation temperature-associated isoforms of carp light meromyosin expressed by recombinant DNAs. Biochem 37: 6606-6613 
    10. Shimizu Y, Machida R, Takenami S. 1981. Species variations in the gel-forming characteristics of fish meat paste. Nippon Suisan Gakkaishi 47: 95-104 
    11. Niwa E, Suzuki R, Hamada I. 1981. Fluorometry of the setting of fish flesh sol-supplement. Nippon Suisan Gakkaishi 47: 1389 
    12. Itoh Y, Yoshinaka R, Ikeda S. 1979. Effects of sulfhydryl reagents on the gel formation of carp actomyosin by heating. Nippon Suisan Gakkaishi 45: 1023-1025 
    13. Taguchi T, Kikuchi K, Oguni M, Tanaka M, Suzuki K. 1978. Heat changes of myosin B $Mg^{2+}$-ATPase and 'setting' of fish meat paste. Nippon Suisan Gakkaishi 44: 1363-1366 
    14. Seki N, Uno H, Lee N, Kimura I, Toyoda K, Fujita T, Arai K. 1990. Transglutaminase activity in Alaska pollack muscle and surimi, and its reaction with myosin B. Nippon Suisan Gakkaishi 56: 125-132 
    15. Numakura T, Seki N, Kimura I, Toyoda K, Fujita T, Takama K, Arai K. 1985. Cross-linking reaction of myosin in the fish paste during setting (suwari). Nippon Suisan Gakkaishi 51: 1559-1565 
    16. Nowsad AAKM, Kanoh S, Niwa E. 1994. Setting of surimi paste in which trans glutaminase is inactivated N-ethylmaleimide. Fish Sci 60: 189-191 
    17. Sano T, Noguchi SF, Matsumoto JJ, Tsuchiya T. 1990. Effect of ionic strength on dynamic viscoelastic behavior of myosin during thermal gelation. J Food Sci 55: 51-54 
    18. Visessanguan W, Ogawa M, Nakai S, An H. 2000. Physicochemical changes and mechanism of heat-induced gelation of arrowtooth flounder myosin. J Agric Food Chem 48: 1016-1023 
    19. Ogawa M, Kanamaru J, Miyashita H, Tamiya T, Tsuchiya T. 1995. Alpha-helical structure of fish actomyosin: Changes during setting. J Food Sci 60: 297-299 
    20. Ogawa M, Nakamura S, Horimoto Y, An H, Tsuchiya T, Nakai S. 1999. Raman spectroscopic study of changes in fish actomyosin during setting. J Agric Food Chem 47: 3309-3318 
    21. Arakawa T, Timasheff SN. 1982. Stabilization of protein structure by sugars. Biochem 21: 6536-6544 
    22. Carpenter JF, Crowe JH. 1988. The mechanism of cryoprotection of proteins by solutes. Cryobiol 25: 244-255 
    23. MacDonald GA, Lanier T. 1991. Carbohydrates as cryoprotectants for meats and surimi. Food Technol 45: 151-159 
    24. Sato S, Tsuchiya T. 1992. Microstructure of surimi and surimi-based products. In Surimi technology. Lanier TC, Lee CM, eds. Marcel Dekker, New York. p 501-518 
    25. Sultanbawa Y, Li-Chan EC. 2001. Structural changes in natural actomyosin and surimi from ling cod (Ophiodon elongatus) during frozen storage in the absence or presence of cryoprotectants. J Agric Food Chem 49: 4716-4725 
    26. Kimira I, Sugimoto M, Toyoda K, Seki N, Arai K, Fujita T. 1991. A study on cross-linking reaction of myosin in kamaboko 'surimi' gels. Nippon Suisan Gakkaishi 57: 1389-1396 
    27. Seguro K, Nozawa Y, Ohtsuka T, Toiguchi S, Motoki M. 1995. Microbial transgulutaminase and $\varepsilon$-($\gamma$-glutamyl) lysine crosslink effects on alastic properties of kamaboko gels. J Food Sci 60: 305-311 
    28. Jiang ST, Leu AZ, Tsai GJ. 1998. Cross-linking of mackerel surimi by microbial transglutaminase and ultraviolet irradiation. J Agric Food Chem 46: 5278-5282 
    29. Jiang ST, Hsieh JF, Ho ML, Chung YC. 2000. Combination effects of microbial trans glutaminase, reducing agent and protease inhibitor on the quality of haitail surimi. J Food Sci 65: 421-425 
    30. Jiang ST, Hsieh JF, Ho ML, Chung YC. 2000. Microbial trans glutaminase affects gel properties of golden threadfinbream and Pollack surimi. J Food Sci 65: 694-699 
    31. Lorand L. 1983. Post-translationalpathways for generation $\varepsilon$-($\gamma$-glutarnyl) lysine cross-links. In Chemistry and biology of 2-macroglobulin. Feinman RD, ed. The New York Academy of Sciences, New York. p 10-27 
    32. Yokoyama Kl, Nakamura N, Seguro K, Kubota K. 2000. Overproduction of microbial transglutaminase in Escherichia coli, in vitro refolding, and characterization of the refolded form. Biosci Biotechnol Biochem 64: 1263-1270 
    33. Nishimura K, Ohishi N, Tanaka Y, Ohgita M, Takeuchi Y, Watanabe H, Gejima A, Samejima E. 1992. Effects of ascorbic acid on the formation process for heat-induced gel of fish meat (kamaboko). Biosci Biotech Biochem 56: 1737-1743 
    34. Kaiser ST, Belitz HD. 1973. Specificity of potato isoinhibitors towards various proteolytic enzymes. Z Lebensm Unters Forsch 151: 18-22 
    35. Wasso DH, Reppond KD, Babbitt JK, French JS. 1992. Effects of additives on proteolytic and functional properties of arrowtooth flounder surimi. J Aquat Food Prod Technol 1: 147-165 
    36. Anazawa H, Miyauchi Y, Sakurada K, Wasson DH, Repond KD. 1993. Evaluation of protease inhibitors in Pacific whitening surimi. J Aquat Food Prod Technol 2: 79-95 
    37. Porter R, Koury B, Kudo G. 1993. Inhibition of protease activity in muscle extracts and surimi from Pacific whiting, Merluccious productus, and arrowtooth flounder, Atheresthes stomias. Marine Fish Rev 55: 10-15 
    38. Reppond KD, Babbittt JK. 1993. Protease inhibitors affect physical properties of arrowtooth flounder and well eye Pollock surimi. J Food Sci 58: 96-98 
    39. Morrissey MT, Wu JW, Lin DD, An H. 1993. Effect of food grade protease inhibitor on autolysis and gel strength of surimi. J Food Sci 58: 1050-1054 
    40. Werasinghe VC, Morrissey MT, An H. 1996. Characterization of active components in food-grade proteinase inhibitor for surimi manufacture. J Agric Food Chem 44: 2584-2590 
    41. Garcia-Carreno FL, Navarrette Del Toro MA, Diaz-Lopez M, Hernandez-Cortes MP, Ezquerra JM. 1996. Proteinase inhibition of fish muscle enzymes using legume seed extracts. J Food Prot 59: 312-318 
    42. Seymore TA, Peters MY, Morrissey MT, An H. 1997. Surimi gel enahacement by bovine plasma proteins. J Agric Food Chem 45: 2919-2923 
    43. Yamashita M, Konagaya S. 1990. High activities of cathepsins B, D, H and L in the white muscle of chum salmon in spawning migration. Comp Biochem Physiol 95B: 149-152 
    44. Kirschke H, Barrett AJ. 1987. Chemistry of lysosomal proteases. In Lysosomes-Their role in protein breakdown. Glaumann H, Ballard FJ, eds. Academic Press, London. p 193-238 
    45. Lenarcic ICB, Kraoovec M, Ritonja A, Olafsson I, Turk V. 1991. Inactivation of human cystatin C and kininogen by human cathepsin D. FEBS Lett 280: 211-215 
    46. Nakamura S, Takasaki H, Kobayashi K, Kato A. 1993. Hyperglycosylation of hen egg white lysozyme in yeast. J Biol Chem 268: 12706-12712 
    47. Nakamura S, Ogawa M, Nakai S. 1998. Effects of polymannosylation of recombinant cystatin C in yeast on its stability and activity. J Agric Food Chem 46: 2882-2887 
    48. Nakamura S, Ogawa M, Saito M, Nakai S. 1998. Application of polymannosylated cystatin to surimi from roeherring to prevent gel weakening. FEBS Lett 427: 252-254 
    49. Liu D, ShiozawaY, Kanoh S, Niwa E. 1997. Effect of measuring temperature on the physical properties of horse mackerel gels. Nippon Suisan Gakkaishi 63: 231-236 
    50. Olden K, Bernet BA, Humphries MJ, Yeo T-K, Yeo K-T, White SL, Newton SA, Bauer HC, Parent JB. 1985. Function of glycoprotein glycans. Trends Biochem Sci 10: 7882 
    51. Gu J, Matsuda T, Nakamura R, Ishiguro H, Ohkubo I, Sasaki M, Takahashi N. 1989. Chemical deglycosylation of hen ovomucoid: protective effect of carbohydrate moiety on tryptic hydrolysis and heat denaturation. J Biochem 106: 66-70 
    52. Hall A, Hakansson K, Mason RW, Grubb A, Abrahamson M. 1995. Structural basis for the biological specificity of cystatin C. Identification of leucine 9 in the N-terminal binding region as a selectivity-conferring residue in the inhibition of mammalian cysteine peptidases. J Biol Chem 270: 5115-5121 
    53. Tzeng S, Jiang S. 2004. Glycosylation modification improved the characteristics of recombinant chicken cystatin and its application on mackerel surimi. J Agric Food Chem 52: 3612-3616 
    54. Samejima K, Ishioroshi M, Yasui T. 1981. Relative role of the head and tail portions of the molecule in heatinduced gelatin of myosin. J Food Sci 46: 1412-1418 
    55. Johnston IA, Goldspink G. 1975. Thermodynamic activation parameters of fish myofibrillar ATPase enzyme and evolutionary adaptations to temperature. Nature 257: 620-622 
    56. Sakamoto H, Kumazawa Y, Toiguchi S, Seguro K, Soeda T, Motoki M. 1995. Gel strength enhancement by addition of microbial trans glutaminase during inshore surimi manufacture. J Food Sci 60: 300-304 
    57. Kawai M, Takehana S, Takagi H. 1997. High-level expression of the chemically synthesized gene for microbial trans glutaminase from Streptoverticillium in Escherichia coli. Biosci Biotechnol Biochem 61: 830-835 
    58. Turk V, Bode W. 1991. The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett 285: 213-219 
    59. Sano T, Noguchi SF, Tsuchiya, Matsumoto JJ. 1986. Contribution of paramyosin to marine meat gel characteristics. J Food Sci 51: 946-950 
    60. Jiang S, Chen G, Tang S, Chen C. 2002. Effect of glycosylation modification ($N-Q-^{108}I{\rightarrow}N-Q-^{108}T$) on the freezing stability of recombinant chicken cystatin overexpressed in Pichia pastoris X-33. J Agric Food Chem 50: 5313-5317 
    61. Jiang ST, Hsieh JF, Tsai GJ. 2004. Interactive effects of microbial transglutaminase and recombinant cystatin on the mackerel and hairtail muscle protein. J Agric Food Chem 52: 3617-3625 
    62. An H, Weerasinghe V, Seymour TA, Morrissey MT. 1994. Degradation of Pacific whiteing surimi proteins by cathepsins. J Food Sci 59: 1013-1017 
    63. Hssieh JF, Tsai GJ, Jiang ST. 2002. Microbial transglutaminase and recombinant cystatin effects on improving the quality of mackerel surimi. J Food Sci 67: 3120-3125 
    64. Hamann DD, Amato PM, Wu MC, Foegeding EA. 1990. Inhibition of modori (gel weaiening) in surimi by plasma hydrolysate ane egg white. J Food Sci 55: 665-669 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
  • 한국식품영양과학회 : 저널
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기