본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of microbiology and biotechnology v.15 no.3, 2005년, pp.551 - 559   피인용횟수: 6

Dynamic Behavior of Regulatory Elements in the Hierarchical Regulatory Network of Various Carbon Sources-Grown Escherichia coli

Lee, Sung-Gun    (Department of Chemical Engineering, College of Engineering, Pusan National University   ); Hwang, Kyu-Suk    (Department of Chemical Engineering, College of Engineering, Pusan National University   ); Kim, Cheol-Min    (Department of Biochemistry, College of Medicine, Medical Research Institute, Pusan National University  );
  • 초록

    The recent rapid increase in genomic data related to many microorganisms and the development of computational tools to accurately analyze large amounts of data have enabled us to design several kinds of simulation approaches for the complex behaviors of cells. Among these approaches, dFBA (dynamic flux balance analysis), which utilizes FBA, differential equations, and regulatory events, has correctly predicted cellular behaviors under given environmental conditions. However, until now, dFBA has centered on substrate concentration, cell growth, and gene on/off, but a detailed hierarchical structure of a regulatory network has not been taken into account. The use of Boolean rules for regulatory events in dFBA has limited the representation of interactions between specific regulatory proteins and genes and the whole transcriptional regulation mechanism with environmental change. In this paper, we adopted the operon as the basic structure, constructed a hierarchical structure for a regulatory network with defined fundamental symbols, and introduced a weight between symbols in order to solve the above problems. Finally, the total control mechanism of regulatory elements (operons, genes, effectors, etc.) with time was simulated through the linkage of dFBA with regulatory network modeling. The lac operon, trp operon, and tna operon in the central metabolic network of E. coli were chosen as the basic models for control patterns. The suggested modeling method in this study can be adopted as a basic framework to describe other transcriptional regulations, and provide biologists and engineers with useful information on transcriptional regulation mechanisms under extracellular environmental change.


  • 주제어

    Dynamic flux balance analysis .   operon .   transcriptional regulation.  

  • 참고문헌 (35)

    1. Cotter, P. A. and R. P. Gunsalus. 1992. Contribution of the Fnr and ArcA gene products in coordinate regulation of cytochrome o and d oxidase (cyoABCDE and cydAB) genes in Escherichia coli. FEMS Microbiol. Lett. 70: 31-36 
    2. Feng, G. and C. Yanofsky. 2001. Reproducing tna operon regulation in vitro in an S-30 system. J. Biol. Chem. 276: 1974-1983 
    3. Hong, S. H., S. Y. Moon, and S. Y. Lee. 2003. Prediction of maximum yields of metabolites and optimal pathways for their production by metabolic flux analysis. J. Microbiol. Biotechnol. 13: 571-577 
    4. Kazarinoff, M. N. and E. E. Snell, 1977. Essential arginine residues in tryptophanase from Escherichia coli. J. Biol. Chem. 252: 7598-7602 
    5. Lee, S. Y. and Papoutsakis. 1999. Metabolic Flux Balance Analysis, pp. 13-57. Marcel Dekker, New York, U.S.A 
    6. Overbeek, R., M. Fonstein, M. D'Souza, G. D. Pusch, and N. Maltsev. 1999. The use of gene clusters to infer functional coupling. Proc. Natl. Acad. Sci. USA 96: 2896-2901 
    7. Saier, M. H. J., T. M. Ramseier, and J. Reiszer. 1996. Regulation of carbon utilization, pp. 1325-1343. In F. C. Neidhardt (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, vol. 1. ASM Press, Washington, D.C 
    8. Varma, A. and B. O. Palsson. 1994. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild type Escherichia coli W3110. Appl. Environ. Microbol. 60: 3724-3731 
    9. Varma, A. and B. O. Palsson. 1994. Metabolic flux balancing: Basic concepts, scientific and practical use. Nat. Biotech. 12: 994-998 
    10. Covert, M. W., E. M. Knight, J. L. Reed, M. J. Herrgard, and B. O. Palsson. 2004. Integrating high-throughput and computational data elucidates bacterial networks. Nature 429: 92-96 
    11. Mahadevan, R., J. S. Edwards, and J. D. Francis. 2002. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys. J. 83: 1331-1340 
    12. Konan, V. K. and C. Yanofsky. 2000. Rho-dependent transcription termination in the tna operon of Escherichia coli: Roles of the boxA sequence and the rut site. J. Bacteriol. 182: 3981-3988 
    13. Stephanopoulos, G. N., A. A. Aristidou, and J. Nielsen. 1998. Metabolic Engineering: Principles and Methodologies, pp. 180-193. Academic Press, London, U.K 
    14. Tamames, J., G. Casari, C. Ouzounis, and A. Valencia. 1997. Conserved cluster of functionally related genes in two bacterial genomes. J. Mol. Evol. 44: 66-73 
    15. Ettema, T., J. van der Oost, and M. Huynen. 2001. Modularity in the gain microbial genomes. Trends Genet. 17: 485-487 
    16. Adhya, S. 1996. The lac and gal operons today, pp. 181-200. In E. C. C. Lin and A. Simon Lynch (eds.), Regulation of Gene Expression in Escherichia coli. Chapman & Hall, New York, U.S.A 
    17. Lee, J. W., A. Goel, M. M. Ataai, and M. M. Domach. 2002. Flux regulation patterns and energy audit of E. coli B/r and K-12. J. Microbiol. Biotechnol. 12: 248-258 
    18. Lee, T. H., M. Y. Kim, Y. W. Ryu, and J. H. Seo. 2001. Estimation of theoretical yield for ethanol production from D-xylose by recombinant Saccharomyces cerevisiae using metabolic pathway synthesis algorithm. J. Microbiol. Biotechnol. 11: 384-388 
    19. Meyers, S. and P. Friedland. 1984. Knowledge-based simulation of genetic regulation in bacteriophage lambda. Nucleic Acids Res. 12: 1-9 
    20. Zheng, Y., J. D. Szustakowski, L. Fortnow, R. J. Roberts, and S. Kasif. 2002. Computational identification of operons in microbial genomes. Genome Res. 12: 1221-1230 
    21. Covert, M. W., C. H. Schilling, and B. O. Palsson. 2001. Regulation of gene expression in flux balance models of metabolism. J. Theor. Biol. 213: 73-88 
    22. Covert, M. W. and B. O. Palsson. 2002. Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J. Biol. Chem. 277: 28058-28064 
    23. Huerta, A. M., H. Salgado, D. Thieffry, and J. Collado-Vides. 1998. RegulonDB: A database on transcriptional regulation in Escherichia coli. Nucleic Acids Res. 26: 55-59 
    24. Yada, T., M. Nakao, Y. Totoki, and K. Nakai. 1999. Modeling and predicting transcriptional units of Escherichia coli genes using hidden Markov models. Bioinformatics 15: 987 -993 
    25. Hong, S. H. and S. Y. Lee. 2000. Metabolic flux distribution in a metabolically engineered Escherichia coli strain producing succinic acid. J. Microbiol. Biotechnol. 10: 496-501 
    26. Schilling, C. H., J. S. Edwards, D. Letscher, and B. O. Palsson. 2000. Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. Biotechnol. Bioeng. 71: 286-306 
    27. Varma, A., B. W. Boesch, and B. O. Palsson. 1993. Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl. Environ. Microbiol. 59: 2465-2473 
    28. Wong, P., S. Gladney, and J. D. Keasling. 1997. Mathematical model of the lac operon: Inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose. Biotechnol. Progr. 13: 132-143 
    29. Glick, B. R. and J. J. Pasternak. 1998. Molecular Biotechnology, pp. 35-38. 2nd Ed. ASM Press, Washington, DC, U.S.A 
    30. Shen-Orr, S. S., R. Milo, S. Mangan, and U. Alon. 2002. Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31: 64-68 
    31. Tomita, M., K. Hashimoto, K. Takahashi, T. S. Shimizu, Y. Matsuzaki, F. Miyoshi, K. Saito, S. Yugi, K. Tanida, J. C. Venter, and C. A. Hutchison III. 1999. E-Cell: Software environment for whole-cell simulation. Bioinformatics 15: 72-84 
    32. MacAdams, H. H. and L. Shapiro. 1995. Circuit simulation of genetic networks. Science 269: 650-656 
    33. Karp, P. D., R. Monica, S. Milton, T. P. lan, M. P. Suzanne, and P. T. Alida. 2000. The EcoCyc and MetaCyc databases. Nucleic Acids Res. 28: 56-59 
    34. Kremling, A., K. Bettenbrock, B. Laube, J. W. Lengeler, and E. D. Gilles. 2001. The organization of metabolic reaction networks: Application for diauxic growth on glucose and lactose. Metab. Eng. 3: 362-379 
    35. Winston, P. H. 1992. Artificial Intelligence, pp. 119-137. 3th Ed. Addison Wesley, Massachusetts, U.S.A 
  • 이 논문을 인용한 문헌 (6)

    1. Lee, Sung-Gun ; Han, Sang-Il ; Kim, Kyung-Hoon ; Kim, Young-Han ; Hwang, Kyu-Suk 2005. "Modeling of in Silico Microbe System based on the Combination of a Hierarchical Regulatory Network with Metabolic Network" 제어·자동화·시스템공학 논문지 = Journal of control, automation and systems engineering, 11(10): 843~850     
    2. 2005. "" 제어·자동화·시스템공학회지 = ICASE magazine, 11(3): 44~47     
    3. 2006. "" Journal of microbiology and biotechnology, 16(4): 543~549     
    4. 2006. "" Journal of microbiology and biotechnology, 16(5): 795~798     
    5. 2006. "" Journal of microbiology and biotechnology, 16(6): 993~998     
    6. 2007. "" Journal of microbiology and biotechnology, 17(4): 579~585     

 저자의 다른 논문

  • 이성근 (7)

    1. 1998 "지식 기반 접근법과 Loop 검증을 이용한 부호운향그래프 자동합성에 관한 연구" 한국가스학회지 = Journal of the Korean institute of gas 2 (1): 53~58    
    2. 2004 "Experimental study on Green Water in Regular Waves" 한국항해항만학회지 = Journal of navigation and port research 28 (7): 647~651    
    3. 2005 "계층적 유전자 조절 네트워크와 대사 네트워크를 통합한 가상 미생물 시스템의 모델링" 제어·자동화·시스템공학 논문지 = Journal of control, automation and systems engineering 11 (10): 843~850    
    4. 2005 "서픽스트리 클러스터링 방법과 블라스트를 통합한 유전자 서열의 클러스터링과 기능검색에 관한 연구" 제어·자동화·시스템공학 논문지 = Journal of control, automation and systems engineering 11 (10): 851~856    
    5. 2005 "계층적 유전자 조절 네트워크가 통합은 가상 미생물 시스템" 제어·자동화·시스템공학회지 = ICASE magazine 11 (3): 44~47    
    6. 2006 "Simulation of Dynamic Behavior of Glucose- and Tryptophan-Grown Escherichia coli Using Constraint-Based Metabolic Models with a Hierarchical Regulatory Network" Journal of microbiology and biotechnology 16 (6): 993~998    
    7. 2006 "기능 도메인 예측을 위한 유전자 서열 클러스터링" 제어·자동화·시스템공학 논문지 = Journal of control, automation and systems engineering 12 (10): 1044~1049    
  • 황규석 (29)

  • 김철민 (27)

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기