본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of microbiology and biotechnology v.15 no.3, 2005년, pp.587 - 594   피인용횟수: 3

Relationship Between Enhancement of Electrostriction and Decrease of Activation Energy in Porcine Pancreatic Lipase Catalysis

PARK HYUN    (Korea Polar Research Institute, Korea Ocean Research & Development Institute   ); LEE KI-SEOG    (Division of Biotechnology and Genetic Engineering, Korea Ocean Research & Development Institute   ); PARK SEON-MI    (Division of Biotechnology and Genetic Engineering, Korea Ocean Research & Development Institute   ); LEE KWANG-WON    (Division of Food Science, Korea University   ); KIM AUGUSTINE YONGHWI    (Department of Food Science & Technology, Sejong University   ); CHI YOUNG-MIN    (Division of Biotechnology and Genetic Engineering, Korea Ocean Research & Development Institute  );
  • 초록

    The contribution of electrostriction of water molecules to the stabilization of the negatively charged tetrahedral transition state of a lipase-catalyzed reaction was examined by means of kinetic studies involving high-pressure and solvent dielectric constant. A good correlation was observed between the increased catalytic efficiency of lipase and the decreased solvent dielectric constant. When the dielectric constant of solvents was lowered by 5.00 units, the losses of activation energy and free energy of activation were 7.92 kJ/mol and 11.24 kJ/mol, respectively. The activation volume for $k_{cat}$ decreased significantly as the dielectric constant of solvent decreased, indicating that the degree of electrostriction of water molecules around the charged tetrahedral transition state has been enhanced. These observations demonstrate that the increase in the catalytic efficiency of the lipase reaction with decreasing dielectric constant resulted from the stabilization of electrostatic energy for the formation of an oxyanion hole, and that this stabilization was caused by the increase of electrostricted water around the charged tetrahedral transition state. Therefore, we conclude that the control of solvent dielectric constant can stabilize the tetrahedral transition state, thus lowering the activation energy.


  • 주제어

    Tetrahedral transition state .   electrostriction .   high-pressure kinetics .   dielectric constant .   lipase .   activation volume.  

  • 참고문헌 (32)

    1. Britto, P. J., L. Knipling, and J. Wolff. 2002. The local electrostatic environment determines cysteine reactivity of tubulin. J. Biol. Chem. 277: 29018-29027 
    2. Burdette, R. A. and D. M. Quinn. 1986. Interfacial reaction dynamics and acylenzyme mechanism for lipoprotein lipasecatalyzed hydrolysis of lipid p-nitrophenyl ester. J. Biol. Chem. 261: 12016-12021 
    3. Lee, K. S., Y. M. Chi, and Y. G. Yu. 2002. Effect of pressure on catalytic properties of glutamate racemase from Aquifex pyrophilus, an extremophilic bacteria. J. Microbiol. Biotechnol. 12: 149-152 
    4. Liu, R., R. Ravindernath, C. E. Ha, C. E. Petersen, N. V. Bhagavan, and R. G. Eckenhoff. 2002. The role of electrostatic interaction in human serum albumin binding and stabilization by halothane. J. Biol. Chem. 277: 36373-37379 
    5. Low, P. S. and G. N. Somero. ]975. Activation volumes in enzyme catalysis: Their sources and modification by lowmolecular-weight solutes. Proc. Nat. Acad. Sci. USA 72: 3014-3018 
    6. Morild, E. 1981. The theory of pressure effects on enzymes. Adv. Prot. Chem. 34: 93-166 
    7. Nakasako, M., M. Odaka, M. Yohda, N. Dohmae, K. Takio, N. Kamiya, and J. Endo. 1999. Tertiary and quaternary structure of photoreactive Fe-type nitrile hydratase from Rhodococcus sp. N-771: Roles of hydration water molecules in stabilizing the structure and the structural origin of the substrate specificity of the enzyme. Biochemistry 38: 9887-9898 
    8. Petersen, M. T. N., P. Fojan, and S. B. Petersen. 2001. How do lipases and esterases work: The electrostatic contribution. J. Biotechnol. 85: 115-147 
    9. Svendsen, A. 2000. Lipase protein engineering. Biochim. Biophys. Acta 1543: 223-238 
    10. Szeltner, Z., D. Rea, Y. Renner, V. Fulop, and L. Polgar. 2002. Electrostatic effects and binding determinants in the catalysis of prolyl oligopeptidase. J. Biol. Chem. 277: 42613-42622 
    11. Van-Eldik, R., T. Asano, and W. J. Le Noble. 1989. Activation and reaction volumes in solution. Chem. Rev. 89: 549-688 
    12. Fink. A. L. 1974. The trypsin-catalyzed hydrolysis of N-benzyloxycarbonyl-L-lysine p-nitrophenyl ester in dimethylsulfoxide at sub-zero temperatures. J. Biol. Chem. 249: 5027-5032 
    13. Maurel, P. C. 1978. Relevance of dielectric constant and solvent hydrophobicity to the organic solvent effect in enzymology. J. Biol. Chem. 253: 1677-1683 
    14. Reichardt, C. 1988. Solvent effects on the rate of homogeneous chemical reactions, pp. 121-284. In: Solvents and Solvent Effects in Organic Chemistry, 2nd Ed., VCH, Weinheim 
    15. Castaneda-Agullo, M. and L. M. Del-Castillo. 1958. The influence of the medium dielectric strength upon trypsin kinetics. J. Gen. Physiol. 42: 617-634 
    16. Compton, P. D., R. J. Coli, and A. L. Fink. 1986. Effect of methanol cryosolvents on the structural and catalytic properties of bovine trypsin. J. Biol. Chem. 261: 1248-1252 
    17. Warshel, A. and S. Russel. 1986. Theoretical correlation of structure and energetics in the catalytic reaction of trypsin. J. Am. Chem. Soc. 108: 6569-6579 
    18. Szeltner, Z., D. Rea, V. Renner, L. Juliano, V. Fulop, and L. Polgar. 2003. Electrostatic environment at the active site of prolyl oligopeptidase is highly influential during substrate binding. J. Biol. Chem. 278: 48786-48793 
    19. Zandonella, G., P. Stadler, L. Haalck, F. Spener, F. Paltaut, and A. Hermetter. 1999. Interactions of fluorescent triacylglycerol analogs covalently bound to the active site of a lipase from Rhizopus oryzae. Eur. J. Biochem. 262: 63-69 
    20. Kim, J. B. and J. S. Dordick. 1993. Pressure affects enzyme function in organic media. Biotechnol. Bioeng. 42: 772-776 
    21. Eckert, C. A. 1972. High pressure kinetics in solution. Annu. Rev. Phys. Chem. 23: 239-264 
    22. Nicolas, A., M. Egmond, T. Verrips, J. Vlieg, S. Longhi, C. Cambillau, and C. Martinez. 1996. Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state. Biochemistly 35: 398-410 
    23. Hermoso, J., D. Pignol, B. Kerfelec, I. Crenon, C. Chapus, and J. C. Fontecilla-Camps. 1996. Lipase activation by nonionic detergents: The crystal structure of the porcine lipase-colipase-tetraethylene glycol monooctyl ether complex. J. Biol. Chem. 271: 18007-18016 
    24. Moreau, H., A. Moulin, Y. Gargouri, J. Noel, and R. Verger. 1991. Inactivation of gastric and pancreatic lipases by diethyl p-nitrophenyl phosphate. Biochemistry 30: 1037-1041 
    25. Isaacs, N. S. 1981. Effect of pressure on rate process, pp. 181-354. In: Liquid Phase High-Pressure Chemistry. John Wiley & Sons, New York, U.S.A 
    26. Michels, P. C., J. S. Dordick, and D. S. Clark. 1997. Dipole formation and solvent electrostriction in subtilisin catalysis. J. Am. Chem. Soc. 119: 9331-9336 
    27. Park, H., K. S. Lee, Y. M. Chi, and S. W. Jeong. 2005. Effects of methanol on the catalytic properties of porcine pancreatic lipase. J. Microbiol. Biotechnol. 15: 296-301 
    28. Xu, Z. F., A. Affleck, P. Wangikar, V. Suzawa, J. S. Dordick, and D. S. Clark. 1994. Transition state stabilization of subtilisins in organic media. Biotechnol. Bioeng. 43: 515-520 
    29. Low, P. S. and G. N. Somero. 1975. Protein hydration changes during catalysis: A new mechanism of enzyme rateenhancement and ion activation/inhibition of catalysis. Proc. Nat. Acad. Sci. USA 72: 3305-3309 
    30. Taniguchi, Y. and S. Makimoto. 1988. High pressure studies of catalysis. J. Mol. Cat. 47: 323-334 
    31. Park, H. and Y. M. Chi. 1998. Distinction between the influence of dielectric constant and of methanol concentration on trypsin-catalyzed hydrolysis and methanolysis. J. Microbiol. Biotechnol. 8: 656-662 
    32. Warshel, A. 2000. Perspective on the energetics of enzymatic reaction. Theor. Chem. Acc. 103: 337-339 
  • 이 논문을 인용한 문헌 (3)

    1. 2006. "" Journal of microbiology and biotechnology, 16(9): 1434~1440     
    2. 2007. "" Journal of microbiology and biotechnology, 17(4): 604~610     
    3. 2007. "" Journal of microbiology and biotechnology, 17(7): 1071~1078     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 이용한 콘텐츠
이 논문과 함께 출판된 논문 + 더보기