본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of microbiology and biotechnology v.15 no.3, 2005년, pp.626 - 632   피인용횟수: 4

Novel Cationic Microbial Polyglucosamine Biopolymer from New Enterobacter sp. BL-2 and Its Bioflocculation Efficacy

SON MI-KYUNG    (Department of Genetic Engineering, College of Natural Sciences, Kyungpook National University   ); SHIN HYUN-DONG    (Department of Genetic Engineering, College of Natural Sciences, Kyungpook National University   ); HUH TAE-LIN    (Department of Genetic Engineering, College of Natural Sciences, Kyungpook National University   ); JANG JIN-HO    (Regional Research Center for Processing and Application of Agriculture Products, Daegu University   ); LEE YONG-HYUN    (Department of Genetic Engineering, College of Natural Sciences, Kyungpook National University  );
  • 초록

    A new bacterium BL-2 excreting a novel cationic polyglucosamine biopolymer was isolated from the spoiled leaves of Chinese cabbage and identified as Enterobacter sp. BL-2. The isolated Enterobacter sp. BL-2 was cultivated in pH-stat fed-batch culture using acetic acid as the feeding stock at pH 8.0, resulting in 17.11 g/l of cells and 1.53 g/l of an extracellular biopolymer after 72 h. The excreted biopolymer was purified by a three-step procedure, involving ethanol precipitation and deproteinizations, to a nearly homogeneous state, and its molecular weight was found to be 106 kDa. It was composed of glucosamine, rhamnose, and galactose at a molar ratio of 86.4:1.6:1.0, respectively, indicating a rarely found novel high-glucosamine-containing biopolymer. The FT-IR and $^{13}C-NMR$ spectra of the novel cationic polyglucosamine biopolymer PGB-l revealed a close identity with chitosan from crab shell. It can effectively flocculate various suspended solids, including kaolin clay, $Ca(OH)_2,\;Al_{2}O_3$ , active carbon, microbial cells, and acidic dyes.

  • 주제어

    Bioflocculant .   Enterobacter sp.   BL-2 .   pH-stat fed-batch cultivation .   polyglucosamine biopolymer.  

  • 참고문헌 (31)

    1. Gerhardt, P., G. E. Murray, W. A. Wood, and N. R. Kreg. 1994. Methods for General and Molecular Bacteriology, pp. 8-292. American Society for Microbiology, Washington DC 
    2. Harish Prashanth, K. V., F. S. Kittur, and R. N. Tharanathan. 2002. Solid state structure of chitosan prepared under different N-deacetylating conditions. Carbohydr. Polym. 50: 27-33 
    3. Kurane, R., K. Toeda, and T. Suzuki. 1986. Culture conditions for production of microbial flocculant by Rhodococcus erythropolis. Agric. Biol. Chem. 50: 2309-2313 
    4. Masters, C. L., G. Multhaup, G. Simms, J. Pottgisser, R. N. Martins, and K. Beyreuther. 1985. Neuronal origin of a cerebral amyloid: Neurofibrillary tangles or Alzheimer's disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J. 4: 2757-2763 
    5. Moon, G. S., C. H. Kang, Y. R. Pyun, and W. J. Kim. 2004. Isolation, identification, and characterization of a bacteriocinproducing Enterococcus sp. from kimchi and its application to kimchi fermentation. J. Microbiol. Biotechnol. 14: 924-931 
    6. Kreg, N. R. and J. G. Holt. 1984. Bergey's Manual of Systematic Bacteriology, vol. 1. Williams & Wilkins, Baltimore, Maryland 
    7. Sandford, P. A. and G. P. Hutchings. 1987. Chitosan - a natural, cationic biopolymer: Commercial applications, pp. 363-375. In M. Yalpani (ed.), Industrial Polysaccharides: Genetic Engineering, Structure/Property Relations and Applications. Elsevier Science Publishers, Amsterdam 
    8. Yu, K. W., K. S. Shin, Y. M. Choi, and H. J. Suh. 2004. Macrophage stimulating activity of exo-biopolymer from submerged culture of Lentinus edodes with rice bran. J. Microbiol. Biotechnol. 14: 658-664 
    9. Jang, J. H., H. C. Hia, M. Ike, T. Hirao, T. Yoshida, and M. Fujita. 2002. Acid hydrolysis and determination of total hexosamine in biopolymer produced by Citrobacter sp. TKF04 using modified Elson-Morgan method, p. 187. In: Proceedings of the 8th Annual Meeting of the Society for Biotechnology of Japan, Osaka, Japan 
    10. Yoon, S. H., J. K. Song, S. J. Go, and J. C. Ryu. 1998. Production of biopolymer flocculant by Bacillus subtilis TB11. J. Microbiol. Biotechnol. 8: 606-612 
    11. Yeo, S. H., O. S. Lee, I. S. Lee, H. S. Kim, T. S. Yu, and Y. J. Jeong. 2004. Gluconacetobacter persimmonnonis sp. nov., isolated from Korean traditional persimmon vinegar. J. Microbiol. Biotechnol. 14: 276-283 
    12. Shih, I. L., Y. T. Van, L. C. Yeh, H. G. Lin, and Y. N. Chang. 2001. Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties. Biores. Technol. 78: 267-272 
    13. Jegasothy, H., M. Wootton, and R. J. Fairclought. 2000. Agarose gel electrophoresis of wheat starch. J. Cereal Sci. 31: 75-78 
    14. Zeng, X., X. Xiao, P. Wang, and F. Wang. 2004. Screening and characterization of psychrotropic, lipolytic bacteria from deep-sea sediments. J. Microbiol. Biotechnol. 14: 952-958 
    15. Oh, H. M., S. J. Lee, M. H. Park, H. S. Kim, H. C. Kim, J. H. Yoon, G. S. Kwon, and B. D. Yoon. 2001. Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnol. Lett. 23: 1229-1234 
    16. Toeda, K. and R. Kurane. 1991. Microbial flocculant from Alcaligenes cupidus KT 201. Agric. Biol. Chem. 55: 2663-2664 
    17. Watanebe, M., Y. Suzuki, K. Sasaki, Y. Nakashimada, and N. Nishio. 1999. Flocculating property of extracellular polymeric substance derived from a marine photosynthetic bacterium, Rhodovulum sp. J. Biosci. Bioeng. 87: 625-629 
    18. Jang, J. H., M. Ike, S. M. Kim, and M. Fujita. 2001. Production of a novel bioflocculant by fed-batch culture of Citrobacter sp. Biotechnol. Lett. 23: 593-597 
    19. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425 
    20. Ramos, V. M., N. M. Rodriuez, M. S. Rodriuez, A. Heras, and E. Agull. 2003. Modified chitosan carrying phosphoric and alkyl groups. Carbohydr. Polym. 51: 425-429 
    21. Dermlim, W., P. Prasertsan, and H. Doelle. 1999. Screening and characterization of bioflocculant produced by isolated Klebsiella sp. Appl. Microbiol. Biotechnol. 52: 698-703 
    22. Chaplin, M. F. and J. F. Kennedy. 1986. Carbohydrate Analysis: A Practical Approach, pp. 2-13. IRL Press, Oxford, Washington DC 
    23. Fujita, M., M. Ike, J. H. Jang, S. M. Kim, and T. Hirao. 2001. Bioflocculation production from lower-molecular fatty acids as a novel strategy for utilization of sludge digestion liquor. Water Sci. Technol. 144: 237-243 
    24. Nakamura, J., S. Miyashiro, and Y. Hirose. 1976. Screening, isolation and some properties of microbial cell flocculants. Agric. Biol. Chem. 40: 377-383 
    25. Dearfield, K. L., C. O. Abernathy, M. S. Ottley, J. H. Branter, and P. F. Hayes. 1988. Acrylamide: Its metabolism, developmental and reproductive effects, genotoxicity and carcinogenicity. Mutat. Res. 195: 45-77 
    26. Deng, S. B., R. B. Bai, X. M. Hu, and Q. Luo. 2003. Characteristics of a bioflocculant produced by Bacillus mucilaginosus and its use in starch wastewater treatment. Appl. Microbiol. Biotechnol. 60: 588-593 
    27. Yokoi, H., T. Aratake, J. Hirose, S. Hayashi, and Y. Takasaki. 2001. Simultaneous production of hydrogen and bioflocculant by Enterobacter sp. BY-29. World J. Microbiol. Biotechnol. 17: 609-631 
    28. Fujita, M., M. Ike, S. Tachibana, G. Kitada, S. M. Kim, and S. Inoue. 2000. Characterization of a biotlocculant produced by Citrobacter sp. TKF04 from acetic and propionic acids. J. Biosci. Bioeng. 89: 40-46 
    29. Lee, J. W., F. Dong, W. G. Yeomans, A. L. Allen, R. A. Gross, and D. L. Kaplan. 2001. Direct incorporation of glucosamine and N-acetylglucosamine into exopolymers by Gluconacetobacter xylinus (=Acetobacter xylium) ATCC 10245: Production of chitosan-cellulose and chitin-cellulose exopolymers. Appl. Environ. Microbiol. 67: 3970-3975 
    30. Salehizadeh, H. and S. A. Shojaosadati. 2001. Extracellular biopolymer flocculants: Recent trends and biotechnological importance. J. Biotechnol. Adv. 19: 371-385 
    31. Wishart, D. S., C. G. Bigam, J. Yao, F. Abildgaard, H. J. Dyson, E. Oldfield, J. L. Markley, and B. D. Sykes. 1995. $^{1}H$, $^{13}C$ and $^{15}N$ chemical shift referencing in biomolecular NMR. J. Biomol. NMR 6: 135-140 
  • 이 논문을 인용한 문헌 (4)

    1. 2007. "" Journal of toxicology and public health : an official journal of the Korean Society of Toxicology, 23(4): 373~382     
    2. 2007. "" Journal of microbiology and biotechnology, 17(12): 1983~1990     
    3. 2007. "" Journal of microbiology and biotechnology, 17(2): 364~368     
    4. 2008. "" Journal of microbiology and biotechnology, 18(1): 104~106     

 저자의 다른 논문

  • 손미경 (2)

    1. 2007 "Mouse Single Oral Dose Toxicity Studies of PGB-1, a Novel Polyglucosamine Polymer Produce from Enterobacter sp. BL-2" Journal of toxicology and public health : an official journal of the Korean Society of Toxicology 23 (4): 373~382    
    2. 2007 "Single Oral Dose Toxicity Studies of PGB-2, a Novel Polyglucosamine Polymer Produced from Citrobacter sp. BL-4 in Mice" Journal of toxicology and public health : an official journal of the Korean Society of Toxicology 23 (1): 65~72    
  • 신현동 (17)

  • Lee, Yong-Hyun (75)

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역



유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기