본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of microbiology and biotechnology v.15 no.3, 2005년, pp.665 - 671   피인용횟수: 2

Cell Signaling Mechanisms of Sperm Motility in Aquatic Species

Kho, Kang-Hee    (Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo   ); Morisawa, Masaaki    (Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo   ); Cho, Kap-Seong    (Department of Food Science and Technology, Sunchon National University  );
  • 초록

    Initiation and activation of sperm motility are prerequisite processes for the contact and fusion of male and female gametes at fertilization. The phenomena are under the regulation of cAMP and $Ca^{2+}$ in vertebrates and invertebrates. Mammalian sperm requires $Ca^{2+}$ and cAMP for the activation of sperm motility. Cell signaling for the initiation and activation of sperm motility in the ascidians and salmonid fishes has drawn much attention. In the ascidians, the sperm-activating and attracting factors from unfertilized egg require extracellular $Ca^{2+}$ for activating sperm motility and eliciting chemotactic behavior toward the egg. On the other hand, the cAMP-dependent phosphorylation of protein is essential for the initiation of sperm motility in salmonid fishes. A decrease of the environmental $K^+$ concentration surrounding the spawned sperm causes $K^+$ efflux and $Ca^{2+}$ influx through the specific $K^+$ channel and dihydropyridine-sensitive L-/T-type $Ca^{2+}$ channel, respectively, thereby leading to the membrane hyperpolarization. The membrane hyperpolarization induces synthesis of cAMP, which triggers further cell signaling processes, such as cAMP-dependent protein phosphorylation, to initiate sperm motility in salmonid fishes. This article reviews the studies on the physiological mechanisms of sperm motility and its cell signaling in aquatic species.


  • 주제어

    Sperm .   motility .   cell signaling .   salmonid .   teleost.  

  • 참고문헌 (77)

    1. Ashizawa, K., H. Tomonaga, and Y. Tsuzuki. 1994. Regulation of flagellar motility of fowl spermatozoa: Evidence for the involvement of intracellular $Ca^{2+}$ and calmodulin. J. Reprod. Fert. 101: 265-272 
    2. Ashizawa, K., G. J. Wishart, and Y. Tsuduki. 1995. Regulatory mechanisms of fowl sperm motility: Possible role of endogenous myosin light chain kinase-like protein. J. Reprod. Fertil. 104: 141-148 
    3. Babcock, D. F., D. M. Stammerjohn, and T. Hutchison. 1978. Calcium redistribution in individual cells correlated with ionophore action on motility. J. Exp. Zool. 204: 391-400 
    4. Brokaw, C. J. 1991. Calcium sensors in sea urchin sperm flagella. Cell Motil. Cytoskel. 18: 123-130 
    5. Detweiler, C. and P. Thomas. 1998. Role of ions and ion channels in the regulation of Atlantic croaker sperm motility. J. Exp. Zool. 281: 139-148 
    6. Galindo, B. E., C. Beltran, E. J. Cragoe, and A. Darszon. 2000. Participation of a $K^+$ channel modulated directly by cGMP in the speract-induced signaling cascade of Strongylocentrotus purpuratus sea urchin sperm. Dev. Biol. 221: 285-294 
    7. Griffin, F. J., C. A. Vines, M. C. Pillai, R. Yanagimachi, and C. N. Cherr. 1996. Sperm motility initiation factor is a major component of the Pacific herring egg chorion. Dev. Growth Differ. 38: 193-202 
    8. Inaba, K., O. Kagami, and K. Ogawa. 1999. Tctex2-related outer arm dynein light chain is phosphorylated at activation of sperm motility. Biochem. Biophys. Res. Commun. 256: 177-183 
    9. Means, A. R., J. S. Tash, and V. Guerriero. 1982. Regulation of the cytoskelton by $Ca^{2+}$-calmodulin and cAMP. Ann. NY. Acad. Sci. 383: 69-84 
    10. Morisawa, M. and M. Okuno. 1982. Cyclic AMP induces maturation of trout sperm axoneme to initiate motility. Nature 295: 703-704 
    11. Morisawa, M., S. Tanimoto, and H. Ohtake. 1992. Characterization and partial purification of sperm-activating substance from eggs of the herring, Clupea plasii. J. Exp. Zool. 264: 225-230 
    12. Morton, B. E., R. Sagadrac, and C. Fraser. 1978. Sperm motility within the mammalian epididymis: Species variation and correlation with free calcium levels in epididymal plasma. Fertil. Steril. 29: 695-698 
    13. Oda, S., Y. Igarashi, K. Manaka, N. Koibuchi, M. SakaiSawada, K. Sakai, M. Morisawa, H. Ohtake, and N. Shimizu. 1998. Sperm-activating proteins obtained from the herring egg are homologous to trypsin inhibitors and synthesized in follicle cells. Dev. Biol. 204: 55-63 
    14. Amanze, D. and A. Iyenger. 1990. The micropyle: A sperm guidance system in teleost fertilization. Development 109: 495-500 
    15. Ashizawa, K., G. J. Wishart, H. Tomonaga, K. Nishinakama, and Y. Tsuzuki. 1994. Presence of protein phosphatase type and its involvement in temperature-dependent flagellar movement of fowl spermatozoa. FEBS Lett. 350: 130-134 
    16. Cosson, M. P., R. Billard, and L. Letellier. 1989. Rise of internal $Ca^{2+}$ accompanies the initiation of trout sperm motility. Cell Motil. Cytoskel. 14: 424-434 
    17. Morisawa, M. and H. Hayashi. 1985. Phosphorylation of a 15 K axonemal protein is the trigger initiating trout sperm motility. Biomed. Res. 6: 181-184 
    18. Johnson, C. H., D. L. Clapper, M. M. Winkler, H. C. Lee, and D. Epel. 1983. A volatile inhibitor immobilizes sea urchin sperm in semen by depressing the intracellular pH. Dev. Biol. 98: 493-501 
    19. Okamura, N., Y. Tajima, A. Soejima, H. Masuda, and Y. Sugita. 1985. Sodium bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylyl cyclase. J. Biol. Chem. 260: 9699-9705 
    20. Heffiner, L. J. and B. T. Storey. 1981. The role of calcium in maintaining motility in mouse spermatozoa. J. Exp. Zool. 218: 427-434 
    21. Kho, K. H., M. Morisawa, and K. S. Choi. 2003. Membrane hyperpolarization increases cAMP to induce the initiation of sperm motility in Salmonid fishes, rainbow trout and masu salmon. J. Microbiol. Biotechnol. 13: 833-840 
    22. Chang, Y. J., Y. H. Choi, H. K. Lim, and K. H. Kho. 1999. Cold storage and cryopreservation of grey mullet, Mugil cephalus, sperm. J. Aquaculture 12: 57-62 
    23. Gatti, J. L., R. Billard, and R. Christen. 1990. Ionic regulation of the plasma membrane potential of rainbow trout, Salmo gairdneri, spermatozoa: Role in the initiation of sperm motility. J. Cell Physiol. 143: 546-554 
    24. Gray, J. 1928. The effect of dilution on the activity of spermatozoa. Br. J. Exp. Biol. 5: 337-344 
    25. Ishiguro, K., H. Murofushi, and H. Sakai. 1982. Evidence that cAMP-dependent protein kinase and a protein factor are involved in reactivation of Triton X-100 models of sea urchin and star-fish spermatozoa. J. Cell Biol. 92: 777-782 
    26. Kho, K. H., T. Satomi, K. Inaba, Y. Oka, and M. Morisawa. 2001. Transmembrane cell signaling for the initiation of trout sperm motility: Roles of ion channels and membrane hyperpolarization for cyclic AMP synthesis. Zool. Sci. 18: 919-928 
    27. Mazia, D., C. Petzelt, R. O. Williams, and I. Meza. 1972. A Ca-activated ATPase in the mitotic apparatus of the sea urchin egg (isolated by a new method). Exp. Cell Res. 70: 325-332 
    28. Yoshida, K. 1998. The study on the mechanism of sperm activation by sperm-activation proteins in the Pacific herring, Clupea pallasii. Ph. D. Thesis, University of Tokyo, Tokyo 
    29. Babcock, D. F., J. P. Singh, and H. A. Lardy. 1979. Alteration of membrane permeability to calcium ions during maturation of bovine spermatozoa. Dev. Biol. 69: 85-93 
    30. Lindermann, C. B. 1978. A cAMP-induced increase in the motility of demembranated bull sperm models. Cell 13: 918 
    31. Pillai, M. C., T. S. Shields, R. Yanagimachi, and G. N. B. Cherr. 1993. Isolation and partial characterization of the sperm motility initiation factor from eggs of the Pacific herring, Clupea pallasi. J. Exp. Zool. 265: 336-342 
    32. Pires, E. M. V. and S. V. Perry. 1977. Purification and properties of myosin light chain kinase from fast skeletal muscle. J Biol. Chem. 167: 137-146 
    33. Morisawa, M. and K. Suzuki. 1980. Osmolarity and potassium ion: Their roles in initiation of sperm motility in teleosts. Science 210: 1145-1147 
    34. Tajima, Y., N. Okamura, and Y. Sugita. 1987. The activation effects of bicarbonate on sperm motility and respiration at ejaculation. Biochim. Biophys. Acta 924: 519-529 
    35. Billard, R., T. Cosson, and L. W. Crim. 1993. Motility and survival of halibut sperm during short term storage. Aqua. Living Resour. 6: 67-75 
    36. Boitano, S. and C. K. Omoto. 1991. Membrane hyperpolarization activates trout sperm without an increase in intracellular pH. J. Cell Sci. 98: 343-349 
    37. Bookbinder, H., G. W. Moy, and V. D. Vacquire. 1990. Purification of sea urchin sperm adenylyl cyclase. J. Cell Biol. 111: 1859-1866 
    38. Kho, K. H., Y. J. Chang, and H. K. Lim. 1997. Effect of osmolality and $Ca^{2+}$ on sperm motility in marbled sole, Limanda yokohamae. J. Korean Fish. Soc. 30: 809-815 
    39. Storey, B. T. 1975. Energy metabolism of spermatozoa: Effect of calcium ion on respiration of mature epididymal sperm of rabbit. Biol. Reprod. 13: 1-9 
    40. Cook, S. P. and D. F. Babcock. 1993. Activation of $Ca^{2+}$ permeability by cAMP is coordinated through the pH increase induced by speract. J. Biol. Chem. 268: 22408-22413 
    41. Cook, S. P. and D. F. Babcock. 1993. Selective modulation by cGMP of the $K^+$ channel activated by speract. J. Biol. Chem. 268: 22402-22407 
    42. Oda, S., Y. Igarashi, H. Ohtake, K. Sakai, N. Shimizu, and M. Morisawa. 1995. Sperm-activating proteins from unfertilized eggs of the Pacific herring, Clupia pallasii. Dev. Growth Differ. 37: 257-261 
    43. Morton, B., J. Hrrigan-Lum, L. Albabli, and T. Jooss. 1974. The activation of motility in quiescent hamster sperm from the epididymis by calcium and cyclic nucleotides. Biochem. Biophys. Res. Commun. 56: 372-379 
    44. Chafouleas, J. G., J. R. Dedman, R. P. Munjal, and A. R. Means. 1979. Calmodulin: Development and application of a sensitive radioimmunoassay. J. Biol. Chem. 254: 10262-10267 
    45. Gonzlez-Martnez, M. T., A. Guerrero, E. Morales, L. D. L. Torre, and A. Darszon. 1992. A depolarization can trigger $Ca^{2+}$ uptake and the acrosome reaction when preceded by a hyperpolarization in L. pictus sea urchin sperm. Dev. Biol. 150: 193-202 
    46. Izumi, H., T. Mrin, K. Inaba, Y. Oka, and M. Morisawa. 1999. Membrane hyperpolarization by sperm activating and attracting factor increases cAMP level and activates sperm motility in the ascidian Ciona intestinalis. Dev. Biol. 213: 246-256 
    47. Rothchild, L. 1948. The physiology of sea-urchin spermatozoa: Senescence and the dilution effect. J. Exp. Biol. 25: 353-368 
    48. Cheung, W. Y. 1970. Cyclic 3',5'-nucleotide phosphodiesterase: Demonstration of an activator. Biochem. Biophys. Res. Commun. 90: 1039-1047 
    49. Epel, D. E., R. W. Wallace, and W. Y. Cheung. 1981. Calmodulin activates NAD kinase of sea urchin eggs: An early event of fertilization. Cell 23: 543-549 
    50. Nishioka, D. and N. Cross. 1978. The role of external sodium in sea urchin fertilization, pp. 403-413. In Dirksen, E. R., Prescott, D. M. and Fox, C. F. (eds.), Cell Reproduction. Academic Press 
    51. Strussmann, C. A., P, Renard, H. Ling, and F. Takashima. 1994. Motility of pejjerey Odontesthes bonariensis spermatozoa. Fish Sci. 60: 9-13 
    52. Tanimoto, S. and M. Morisawa. 1988. Roles of potassium and calcium channels in the initiation of sperm motility in rainbow trout. Dev. Growth Diff. 30: 117-124 
    53. Babcock, D. F., M. M. Bosma, D. E. Battaglia, and A. Darszon. 1992. Early persistent activation of sperm $K^+$ channels by the egg peptide speract. Proc. Natl. Acad. Sci. USA 89: 6001-6005 
    54. Morisawa, M., M. Okuno, K. Suzuki, S. Morisawa, and K. Ishida. 1983. Initiation of sperm motility in telosts. J. Submicrosc. Cytol. 15: 61-65 
    55. Si, Y. and M. Okuno. 1999. Role of tyrosine phosphorylation of flagellar proteins in hamster sperm hyperactivation. Biol. Reprod. 61: 240-246 
    56. Tash, J. S., S. S. Kakar, and A. R. Means. 1984. Flagellar motility requires the cAMP-dependent phosphorylation of a heat-stable NP-40-soluble 56 kDa protein, axokinin. Cell 38: 551-559 
    57. Blum, J., G. A. Hayes, J. Jamieson, and T. C. Vanaman. 1980. Calmodulin confers calcium sensitivity on ciliary dynein ATPase. J. Cell Biol. 87: 386-397 
    58. Si, Y. and M. Okuno. 1995. Activation of mammalian sperm motility by regulation of microtuble sliding via cyclic adenosine 5'-monophosphate-dependent phosphorylation. Biol. Repr. 53: 1081-1087 
    59. Si, Y. and M. Okuno. 1993. Multiple activation of mouse sperm motility. Mol. Reprod. Dev. 36: 89-95 
    60. Tombes, R. M. and B. M. Shapiro. 1985. Metabolite channeling: A phosphocreatine shuttle to mediate high energy phosphate transport between sperm mitochondria. Cell 4: 325-334 
    61. Yoshida, T. and M. Nomura. 1972. A substance enhancing sperm motility in the ovarian fluid of rainbow trout. Bull. Japan Soc. Sci. Fish 38: 1073-1079 
    62. Beltran, C., O. Zapata, and A. Darszon. 1996. Membrane potential regulates sea urchin sperm adenylylcyclase. Biochemistry 35: 7591-7598 
    63. Brokaw, C. J. and S. M. Nagayama. 1985. Modulation of the asymmetry of sea urchin sperm flagellar bending by calmodulin. J Cell Biol. 100: 1875-1883 
    64. Chang, Y. J., H. K. Lim, and K. H. Kho. 1995. Properties of semen and sperm motility in black seabream, Acanthopagrus schlegeli. J. Aquaculture 8: 149-157 
    65. Kakiuchi, S. and R. Yamazaki. 1970. Calcium-dependent phosphodiesterase activity and its activating factor (PAF) from brain: Studies on cyclic 3',5'-nucleotide phosphodiesterase. Biochem. Biophys. Res. Commun. 41: 1104-1110 
    66. Krasznai, Z., T. Marian, H. Izumi, S. Damjanovich, L. Balkay, L. Tron, and M. Morisawa. 2000. Membrane hyperpolarization removes inactivation of $Ca^{2+}$ channels, leading to $Ca^{2+}$ influx and subsequent initiation of sperm motility in the common carp. Proc. Natl. Acad. Sci. USA 97: 2052-2057 
    67. Billard, R. 1978. Changes in structure and fertilization ability of marine and fresh water fish spermatozoa diluted in media of various salinities. Aquaculture 14: 187-198 
    68. Chao, N. H., H. P. Chen, and I. C. Liao. 1975. Study on cryogenic preservation of grey mullet sperm. Aquacultute 5: 389-406 
    69. Kho, K. H., M. Morisawa, and K. S. Choi. 2004. Role of $Ca^{2+}$ and calmodulin on the initiation of sperm motility in salmonid fishes. J. Microbiol. Biotechnol. 14: 456-465 
    70. Nomura, M., K. Inaba, and M. Morisawa. 2000. Cyclic AMP- and calmodulin-dependent phosphorylation of 21 and 26 kDa proteins in axoneme is a prerequisite for SAAF-induced motile activation in ascidian spermatozoa. Dev. Growth Differ. 42: 129-138 
    71. Tanimoto, S., Y. Kudo, T. Nakazawa, and M. Morisawa. 1994. Implication that potassium flux and increase in intracellular calcium are necessary for the initiation of sperm motility in salmonid fishes. Mol. Reprod. Dev. 39: 409-414 
    72. Morisawa, M. and K. Ishida. 1987. Short-term changes in levels of cyclic AMP, adenylate cyclase, and phosphodiesterase during the initiation of sperm motility in rainbow trout. J. Exp. Zool. 242: 199-204 
    73. Si, Y. and M. Okuno. 1995. Extrusion of microtubule doublet outer dense fiber 5-6 associating with fibrous sheath sliding in mouse sperm flagella. J. Exp. Zool. 273: 355-362 
    74. Si, Y. and M. Okuno. 1999. Regulation of microtubule sliding by a 36-kDa phosphoprotein in hamster sperm flagella. Mol. Reprod. Dev. 52: 328-334 
    75. Takai, H. and M. Morisawa. 1995. Changes in intracellular $K^+$ concentration caused by external osmolality change regulate sperm motility of marine and freshwater teleosts. J. Cell Sci. 108: 1175-1181 
    76. Tash, J. S. and A. R. Means. 1983. Cyclic adenosine 3,5 monophosphate, calcium and protein phosphorylation in flagellar motility. Biol. Reprod. 28: 75-104 
    77. Yanagimachi, R., G. N. Cherr, M. C. Pillai, and J. D. Baldwin. 1992. Factors controlling sperm entry into the micropyles of salmonid and herring eggs. Dev. Growth Differ. 34: 447-461 
  • 이 논문을 인용한 문헌 (2)

    1. Kho, Kang Hee 2007. "Effects of Cryoprotectants and Diluents on Cryopreservation of the Red Seabream, Pagrus major Sperm" Korean journal of Ichthyology = 한국어류학회지, 19(2): 173~177     
    2. 2008. "" Journal of microbiology and biotechnology, 18(2): 365~368     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기