본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of microbiology and biotechnology v.15 no.4, 2005년, pp.728 - 733   피인용횟수: 7

Comparison of Antibiotic Resistance of Blood Culture Strains and Saprophytic Isolates in the Presence of Biofilms, Formed by the Intercellular Adhesion (ica) Gene Cluster in Staphylococcus epidermidis

CHO BONG-GUM    (Laboratory of Enteric Infections, Department of Microbiology, National Institute of Health, Department of Applied Biochemistry, College of Natural Sciences, Konkuk University   ); KIM CHEORL-HO    (National Research Laboratory for Glycobiology, Ministry of Science and Technology of Korean Government and Department of Biochemistry and Molecular Biology, Dongguk University COM   ); LEE BOK KWON    (Laboratory of Enteric Infections, Department of Microbiology, National Institute of Health   ); CHO SEUNG-HAK    (Laboratory of Enteric Infections, Department of Microbiology, National Institute of Health  );
  • 초록

    To elucidate the question of whether biofilm formed by the intercellular adhesion (ica) gene cluster has influences on antibiotic resistance in Staphylococcus epidermidis, we compared 124 skin strains with strains isolated from 50 blood cultures that cause septicemic diseases. The results revealed that the blood culture isolates were more resistant to the antibiotics tested than the saprophytic isolates. Moreover, antibiotic multiresistance was more prevalent in the clinical isolates. In the blood culture isolates, $46\%$ of the strains were resistant to three or more antibiotics, whereas only $12\%$ of the saprophytic isolates were resistant to three or more antibiotics. Interestingly, these characteristics were highly correlated with the biofilm formed by the ica gene cluster. In biofilm-producing strains, $84\%$ of the blood culture isolates and $44\%$ of the saprophytic isolates were antibiotic multiresistant, whereas only $22\%=;and\;9\%$ , respectively, were antibiotic multiresistant in biofilm-nonproducing strains. Additionally, in the biofilm-producing ica-positive strains, $89\%$ of the blood culture isolates and $57\%$ of the saprophytic isolates were antibiotic multiresistant. However, the rate of the antibiotic multiresistance in the ica-negative strains was very low, thus indicating that the biofim formed by the lea gene cluster in S. epidermidis is an important pathogenic factor in association with the antibiotic multiresistance.


  • 주제어

    Biofilm .   intercellular adhesion (ica) gene cluster .   Staphylococcus epidermidis .   antibiotic multiresistance.  

  • 참고문헌 (40)

    1. Arciola, C. R., L. Baldassarri, and L. Montanaro. 2001. Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. J. Clin. Microbiol. 39: 2151-2156 
    2. Bezek, D. M. 1998. Genus identification and antibiotic susceptibility patterns of bacterial isolates from cows with acute mastitis in a practice population. J. Am. Vet. Med. Assoc. 212: 404-406 
    3. Galdbart, J. O., J. Allignet, H. S. Tung, C. Ryden, and N. El Solh. 2000. Screening for Staphylococcus epidermidis markers discriminating skin-flora strains and those responsible for infections of joint prostheses. J. Infect. Dis. 182: 351-355 
    4. Henry, S. L. and K. P. Galloway. 1995. Local antibacterial theraphy for the management of orthopaedic infections. Pharmacokinetic considerations. Clin. Pharmacokinet. 29: 36-45 
    5. Jirku, V., J. Masak, and A. Cejkova. 2001. Reduced susceptibility of a model Saccharomyces cerevisiae biofilm to osmotic upshifts. J. Microbiol. Biotechnol. 11: 17-20 
    6. Kloos, W. E. and T. L. Bannerman. 1994. Update on clinical significance of coagulase-negative staphylococci. Clin. Microbiol. Rev. 7: 117-140 
    7. Nilsson, M., L. Frykberg, J. J. Flock, L. Pei, M. Lindberg, and B. Gruss. 1998. A fibrinogen-binding protein of Staphylococcus epidermidis. Infect. Immun. 66: 2666-2673 
    8. Stewart, P. S. 2002. Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol. 292: 107-113 
    9. Ziebuhr, W, C. Heilmann, F. G6tz, P. Meyer, K. Wilms, E. Straube, and J. Hacker. 1997. Detection of the intercellular adhesion gene cluster (ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect. Immun. 65: 890-896 
    10. Heilmann, C., O. Schweitzer, C. Gerke, N. Vanittanakom, D. Mack, and F. Gotz. 1996. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol. Microbiol. 20: 1083-1091 
    11. Rupp, M. E. and G. L. Archer. 1994. Coagulase-negative staphylococci: Pathogens associated with medical progress. Clin. Infect. Dis. 19: 231-245 
    12. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y., U.S.A 
    13. Chang, M. M. and K. Merritt. 1992. Microbial adherence on poly(methyl methacrylate) (PMMA) surfaces. J. Biomed. Mater. Res. 26: 197-207 
    14. Shin, J. W, J. K. Kang, K. J. Jang, and K. Y. Kim. 2002. Intestinal colonization characteristics of Lactobacillus spp. isolated from chicken cecum and competitive inhibition against Salmonella typhimurium. J. Microbiol. Biotechnol. 12: 576-582 
    15. Zabinski, R. A., K. J. Walker, A. J. Larsson, J. A. Moody, G W. Kaatz, and J. C. Rotschafer. 1995. Effect of aerobic and anaerobic environments on anti staphylococcal activities of five fluoroquinolones. Antimicrob. Agents Chemother. 39: 507-512 
    16. Gristina, A. G, P. Naylor, and Q. Myrvik. 1988. Infections from biomaterials and implants: A race for the surface. Med. Prog. Technol. 14: 205-224 
    17. Heilmann, C., C. Gerke, F. Perdreau-Remington, and F. Gotz. 1996. Characterization of Tn 917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect. Immun. 64: 277-282 
    18. Stone, G, P. Wood, L. Dixon, M. Keyhan, and A. Matin. 2002. Tetracycline rapidly reaches all the constituent cells of uropathogenic Escherichia coli biofilms. Antimicrob. Agents Chemother. 46: 2458-2461 
    19. Walters III, M. C., F. Roe, A. Bugnicourt, M. J. Franklin, and P. S. Stewart. 2003. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprotloxacin and tobramycin. Antimicrob. Agents Chemother. 47: 317-323 
    20. Ziebuhr, W, V. Krimmer, S. Rachid, J. Loessner, F. Gotz, and J. Hacker. 1999. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: Evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol. Microbial. 32: 345-356 
    21. Anderl, J. N., M. J. Franklin, and P. S. Stewart. 2000. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 44: 1818-1824 
    22. Lewis, K. 2001 Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45: 999-1007 
    23. Schumacher-Perdreau, P., C. Heilmann, G Peters, F. Gotz, and G. Pulverer. 1994. Comparative analysis of a biofilmforming Staphylococcus epidermidis strain and its adhesionpositive, accumulation-negative mutant M7. FEMS Microbial. Lett. 117: 71-78 
    24. Tack, K. J. and L. D. Sabath. 1985. Increased minimum inhibitory concentrations with anaerobiasis for tobramycin, gentamicin, and amikacin, compared to latamoxef, piperacillin, chloramphenicol, and clindamycin. Chemotherapy 31: 204-210 
    25. Christensen, G. D., W. A. Simpson, A. L. Bisno, and E. H. Beachey. 1982. Adherence of slime producing strains of Staphylococcus epidermidis to smooth surfaces. Infect. Immun. 37: 318-326 
    26. Tanaka, G, M. Shigeta, H. Komatsuzawa, M. Sugai, H. Suginaka, and T. Usui. 1999. Effect of the growth rate of Pseudomonas aeruginasa biofilms on the susceptibility to antimicrobial agents: Beta-Iactams and tluoroquinolones. Chemotherapy 45: 28-36 
    27. Chambers, H. F. 1988. Methicillin-resistant staphylococci. Clin. Microbiol. Rev. 1: 173-186 
    28. Cho, S. H., K. Naber, J. Hacker, and W. Ziebuhr. 2002. Detection of the icaADBC gene cluster and biofilm formation in Staphylococcus epidermidis isolates from catheter-related urinary tract infections. Int. J. Antimicrob. Agents 19: 570-575 
    29. Heilmann, C., M. Hussain, G Peters, and F. Gotz. 1997. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol. Microbiol. 24: 1013-1024 
    30. MaCK, D., W. Fischer, A. Krokotsch, K. Leopold, R. Hartmann, H. Egge, and R. Laufs. 1996. The intercellular adhesion involved in biofilm accumulation of Staphylococcus epidermidis is a linear ${\beta}$-1,6-linked glucosaminoglycan: Purification and structural analysis. J. Bacteriol. 178: 175-183 
    31. Christensen, G. D., W. A. Simpson, J. J. Younger, L. M. Baddour, F. F. Barrett, D. M. Melton, and E. H. Beachey. 1985. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 22: 996-1006 
    32. Potera, C. 1999. Forging a link between biofilms and disease. Science 283: 1837-1838 
    33. Emori, T. G. and R. P. Gaines. 1993. An overview of nosocomial infections, including the role of the microbiology laboratory. Clin. Microbiol. Rev. 6: 428-442 
    34. Gerke, C., A. Kraft, R. SliBmuth, O. Schweitzer, and F. G6tz. 1998. Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin (PIA). J. Biol. Chem. 273: 18586-18593 
    35. Frebourg, N. B., S. Lefebvre, S. Baert, and J. F. Lemeland. 2000. PCR-based assay for discrimination between invasive and contaminating Staphylococcus epidermidis strains. J. Clin. Microbiol. 38: 877-880 
    36. Van de Belt, H., D. Neut, W Schenk, J. R. van Horn, H. C. van Der Mei, and H. C. Busscher. 2001. Staphylococcus aureus biofilm formation on different gentamicin-loaded polymethylmethracrylate bone cements. Biomaterials 22: 1607-1611 
    37. Christensen, G. D., L. Baldassarri, and W. A. Simpson. 1994. Colonization of medical devices by coagulase-negative staphylococci, pp. 45-78: In A. L. Bisno and F. A. Waldvogel (eds.), Infections Associated with Indwelling Medical Devices, 2nd Ed. ASM Press, Washington, D.C., U.S.A 
    38. Hussain, M., M. Heilmann, C. von Eiff, F. Pedreau-Remington, and G. Peters. 1997. A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect. Immun. 65: 519-524 
    39. Baselga, R., J. Albizu, M. De la Cruz, E. Del Cacho, M Barberan, and B. Amorena. 1993. Phase variation of slime production in Staphylococcus aureus: Implications in colonization and virulence. Infect. Immun. 61: 4857-4862 
    40. Chung, T. w., U. H. Jin, and C. H. Kim. 2003. Salmonella typhimurium LPS confers its resistance to antibacterial agents of baicalin of Scutellaria baicalensis george and novobiocin: Complementation of the rfaE gene required for ADP-L-glycero-D-manno-heptose biosynthesis of lipopolysaccharide. J. Microbiol. Biotechnol. 13: 564-570 
  • 이 논문을 인용한 문헌 (7)

    1. 2006. "" Journal of microbiology and biotechnology, 16(11): 1837~1840     
    2. 2006. "" Journal of microbiology and biotechnology, 16(1): 109~117     
    3. 2006. "" Journal of microbiology and biotechnology, 16(8): 1301~1305     
    4. 2006. "" Journal of microbiology and biotechnology, 16(9): 1377~1383     
    5. 2007. "" Journal of microbiology and biotechnology, 17(1): 146~153     
    6. 2007. "" Journal of microbiology and biotechnology, 17(10): 1733~1737     
    7. 2008. "" Journal of microbiology and biotechnology, 18(1): 28~34     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기