본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

The plant pathology journal v.21 no.2, 2005년, pp.149 - 157  

Molecular Cloning and Functional Analysis of Rice (Oryza sativa L.) OsNDR1 on Defense Signaling Pathway

Lee, Joo-Hee    (Department of Molecular Biology, Sejong University   ); Kim, Sun-Hyung    (Research Institute of Agricultural Resources, Ishikawa Agricultural College   ); Jung, Young-Ho    (Department of Molecular Biology, Sejong University   ); Kim, Jung-A    (Department of Molecular Biology, Sejong University   ); Lee, Mi-Ok    (Department of Molecular Biology, Sejong University   ); Choi, Pil-Gyu    (Department of Molecular Biology, Sejong University   ); Choi, Woo-Bong    (Departments of Biotechnology and Bioengineering/Biomaterial Control, Dongeui University   ); Kim, Kyung-Nam    (Department of Molecular Biology, Sejong University   ); Jwa, Nam-Soo    (Department of Molecular Biology, Sejong University  );
  • 초록

    A novel rice (Oryza sativa L.) gene, homologous to Arabidopsis pathogenesis-related NDR1 gene, was cloned from cDNA library prepared from 30 min Magnaporthe grisea -treated rice seedling leaves, and named as OsNDR1. OsNDR1 encoded a 220-aminoacid polypeptide and was highly similar to the Arabidopsis AtNDR1 protein. OsNDR1 is a plasma membrane (PM)-localized protein, and presumes through sequence analysis and protein localization experiment. Overexpression of OsNDR1 promotes the expression of PBZ1 that is essential for the activation of defense/stressrelated gene. The OsNDR1 promoter did not respond significantly to treatments with either SA, PBZ, or ETP. Exogenously applied BTH induces the same set of SAR genes as biological induction, providing further evidence for BTH as a signal. Presumably, BTH is bound by a receptor and the binding triggers a signal transduction cascade that has an ultimate effect on transcription factors that regulate SAR gene expression. Thus OsNDR1 may act as a transducer of pathogen signals and/or interact with the pathogen and is indeed another important step in clarifying the component participating in the defense response pathways in rice.

  • 주제어

    Benzo(1,2,3)-thiadiazole-7-carbothioic acid Smethyl ester (BTH) .   Magnaporthe grisea .   Oryza sativa L.   .   OsNDR1 .   system acquired resistance (SAR).  

  • 참고문헌 (36)

    1. Coppinger, P., Repetti, P. P., Day, B., Dahlbeck, D., Mehlert, A. and Staskwicz, B. J. 2004. Overexpression of the plasma membrane-localized NDR1 protein results in enhanced bacterial resistance in Arabidopsis thaliana. Plant J. 40:225-237 
    2. Hoekema, A., Hirsch, P. R., Hooykaas, P. J.J. and Schilperoort, Z. A. 1983. A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179-180 
    3. Kiyosawa, S. 1982. Genetic and epidemiological modeling of breakdown of plant disease resistence. Annu. Rev. Phytopathol. 20:93-117 
    4. Lebel, E., Heifetz, P., Thorne, L., Uknes, S., Ryals, J. and Ward, E. 1998. Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J. 16:223-233 
    5. Mindrinos, M., Katagiri, F., Yu, G. L. and Ausubel, F. M. 1994. The Arabidopsis thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell 78: 1089-1099 
    6. Ritter, C. and Dangl, J. L. 1995. The avrRPm1 gene of Pseudomonas syringae pv. maculicola is required for virulence on Arabodopsis. Mol. Plant Microbe Interact. 8:444-453 
    7. Ross, A. F. 1961. Systemic acquired resistance induced by localized virus infections in plants. Virology 14:340-358 
    8. Sonnhammer, E. L. L., von Heijne, G and Krogh, A 1998. A hidden Markov model for predicting transmembrane helices in protein sequences. In Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology, J. Glasgow, T. Littlejohn, F. Major, R. Lathrop, D. Sankoff, and C. Sensen, eds (Menlo Park, CA: American Association for Artificial Intelligence Press), pp. 175-182 
    9. Yu, D., Chen, C. and Chen, Z. 2001. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13:1527-1540 
    10. Puri, N., Jenner, C., Bennett, M., Stewart, R., Mansfield, J., Lyons, N. and Taylor, J. 1997. Expression of avrPphB, an avirulence gene from Pseudomonas syringae pv. phaseolicola, and the delivery of signals causing the hypersensitive reaction in bean. Mol. Plant Microbe Interact. 10:247-256 
    11. Whalen, M. C., Innes, R. W., Bent, A. F. and Staskawicz, B. J. 1991. Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell 3:49-59 
    12. Jwa, N. S., Agrawal, G K., Rakwal, R., Park, C. H. and Agrawal, V. P. 2001. Molecular cloning and characterization of novel jasmonate inducible pathogenesis-related class 10 protein gene, JIOsPR10, from rice (Oryza sativa L.) seedling leaves. Biochem. Biophys. Res. Commun. 286:973-983 
    13. Kyte.J. and Doolittle, R. F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105-132 
    14. Agrawal, G. K., Rakwal, R. and Iwahashi, H. 2002b. Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAPkinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochem. Biophys. Res. Commun. 294: 1009-1016 
    15. Century, K. S., Shapiro, A. D., Repetti, P. P., Dahlbeck, D., Holub, E. and Staskawicz, B. J. 1997. NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science 278: 1963-1965 
    16. Simonich, M. T. and Innes, R. W. 1995. A disease resistance gene in Arabidopsis with specificity for the avrPph3 gene of Pseudomonas syringae pv. Phaseolicola. Mol. Plant Microbe Interact. 8:637-640 
    17. Warren, R. F., Henk, A., Mowery, P., Holub, E. and Innes, R. W. 1998. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell 10:1439-1452 
    18. Metraux, J. P., Signer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gaudin, J., Raschdorf, K., Schmid, E., Blum, W. and Inverardi, B. 1990. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250: 1004-1006 
    19. Eulgem, T., Rushton, P. J., Robatzek, S. and Somssich, I. E. 2000. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5:199-206 
    20. Malamy. J. E. and Benfey, P. N. 1997. Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33-44 
    21. Rushton, P. J. and Somssich, I. E. 1998. Transcriptional control of plant genes responsive to pathogens. Curr. Opin. Plant Biol. 1: 311-315 
    22. Friedrich, L., Kawton, K., Ruess, W., Masner, P., Specker, N., Rella, G. M., Meier, B., Dincher, S., Staub, T., Uknes, S., Metraux, J. P., Kessmann, H. and Ryals, J. 1996. A benzothiadiazole derivative induces systemic acquired resistence in tobacco. Plant J. 10:61-70 
    23. Dilbirligi, M., Erayrnan, M., Sandhu, D., Sidhu, D. and Gill, K. S. 2004. Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 166:461-481 
    24. Hemerly, A. S., Ferreira, P., de Almeida Engler, J., Van Montagu, M., Engler, G. and lnze, D. 1993. cdc2a expression in Arabidopsis is linked with competence for cell division. Plant Cell 5:1711-1723 
    25. Delaney, T, Friedrich, L., Kessmann, H., Uknes, S., Vemooij, B., Ward, E., Weymann, K. and Ryals, J. 1994. The molecular biology of systemic acquired resistance. In Advances in Molecular Genetics of Plant-Microbe Interactions, volume 3 (Daniels, M.ed.). Dordrecht: Ktuwer Academic Publishers, pp.339-347 
    26. Agrawal, G K., Rakwal, R., Jwa, N. S. and Agrawal, V. P. 2002a. Effects of signaling molecules, protein phosphatase inhibitors, and blast pathogen (Magnaporthe grisea) on the mRNA level of a rice (Oryza sativa L.) phospholipids hydroperoxide glutathione peroxidase (OsPHGPX) gene in seedling leaves. Gene 283:227-236 
    27. Bent, A. F., Kunkel, B. N., Dahlbeck, D., Brown, K. L., Schmidt, R., Giraudat, J., Leung, J. and Staskawicz, B. J. 1994. RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 265: 1856-1860 
    28. Dubrovsky, J. G., Doerner, P., Colen-Carmona, A. and Rost, T. L. 2000. Pericycle cell proliferation and lateral root initiation in Arabidopsis thaliana. Plant Physiol. 124: 1648-1657 
    29. Hiei, Y., Ohta, S., Komari, T. and Kumashiro, T. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6:271-82 
    30. Innes, R. W., Bent, A. F., Kunkel, B. N., Bisgrove, S. R. and Staskawicz, B. J. 1993. Molecular analysis of avirulence gene avrRpt2 and indentification of a putative regulatory sequence common to all known Pseudomonas syringae avirulence genes. J. Bacteriol. 175:4859-4869 
    31. Agrawal, G K., Rakwal, R., Jwa, N. S. and Agrawal, V. P. 2001. Signaling molecules and blast pathogen attack activates rice OsPR1a and OsPR1b genes: A model illustrating components participating during defense/stress response. Plant Physiol. Biochem. 39:1095-1103 
    32. Clough, S. J. and Bent, A. F. 1998. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16:735-743 
    33. Grant, M. R., Godiard, L., Straube, E., Ashfield, T, Lewald, J., Sattler, A., Innes, R. W. and Dangle, J. L. 1995. Structure of the Arabidopsos RPM1 gene enabling dual specificity disease resistance. Science 269:843-846 
    34. Krogh, A., Larsson, B., von Heijne, G. and Sonnhammer, E. L. L. 2001. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305:567-580 
    35. Kuc, J. 1982. Induced immunity to plant disease. BioScience 32:854-860 
    36. Bilang, R. and Bogorad, L. 1996. Light-dependent developmental control of rbcS gene expression in epidermal cells of maize leaves. Plant Mol. Biol. 31 :831-841 

 저자의 다른 논문

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역


  • NDSL :
  • 한국식물병리학회 : 저널

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기