본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

New nirS-Harboring Denitrifying Bacteria Isolated from Activated Sludge and Their Denitrifying Functions in Various Cultures

LEE, SOO-YOUN    (School of Life Sciences and Biotechnology, Korea University   ); LEE, SANG-HYON    (School of Life Sciences and Biotechnology, Korea University   ); PARK, YONG-KEUN    (School of Life Sciences and Biotechnology, Korea University  );
  • 초록

    By using PCR with nirS gene primers, three nirSharboring denitrifying bacteria (strain N6, strain N23, and strain R13) were newly isolated from activated sludge of a weak municipal wastewater treatment plant. Small-subunit rRNA gene-based analysis indicated that strain N6, strain N23, and strain R13 were closely related to Arthrobacter sp.,Staphylococcus sp., and Bacillus sp., respectively. In an attempt to identify their roles in biological nitrate and nitrite removal from sewage, we investigated their specific denitrification rates (SDNRs) for $NO_-^3$ - and $NO_-^2$ - in various cultures. All purecultures of each isolated nirS-harboring bacterial strain could remove $NO_-^3$ - and $NO_-^2$ - simultaneously in high efficiency, and the carbon requirements for $NO_-^3$ - removal of strain N6 and strain R13 were effectively low at 3.1 and 4.1 g COD/g $NO_3N$ , respectively. In the case of mix-cultures of the strains (N6+N23, N6+R13, N23+R13, and N6+N23+R13), their SDNRs for $NO_-^3$ - were also effective, and their carbon requirements for $NO_-^3$ - removal were also effective at 3.0- 3.8 g COD/g NO3N. However, all tested mix-cultures accumulated $NO_-^2$ - in their culture media. On the other hand, the continuous culture of activated sludge mixed with strain N6 showed no significant increase of $NO_-^3$ - removal in comparison with strain N6's pure culture. These results suggest that nitrate and nitrite removal in biological wastewater treatment might be dependent on complicated bacterial interactions, including several effective denitrifying bacteria isolated in this study, rather than the specific bacterial types present and the number of bacterial types in activated sludge.


  • 주제어

    nirS-Harboring denitrifying bacteria .   weak municipal wastewater .   SDNRs.  

  • 참고문헌 (29)

    1. Ahn, I. S., M. W. Kim, H. J. La, K. M. Choi, and J. C. Kwon. 2003. Bacterial community composition of activated sludge relative to type end efficiency of municipal wastewater treatment plants. J. Microbiol. Biotechnol. 13: 15- 21 
    2. EPA. 1993. Manual Nitrogen Control. Environment Protection Agency, U.S.A 
    3. Krishnamachari, S. and W. W. Clarkson. 1993. Nitrite accumulation in the effluents from high-strength denitrification of industrial wastewater, pp. 383-392. 47th Purdue Industrial Waste Conference Proceedings. Lewis Publishers, Inc., Chelsea, MI, U.S.A 
    4. Lee, J. W, E. S. Choi, K. I. Gil, H. W. Lee, S. H. Lee, S. Y. Lee, and Y. K. Park. 2001. Removal behavior of biological nitrogen and phosphorus and prediction of microbial community composition with its function in an anaerobic-anoxic system from weak sewage. J. Microbiol. Biotechnol. 11: 994- 1001 
    5. Maidak, B. L., J. R. Cole, C. T. Parker, G. M. Garrity, N. Larsen, B. Li, T. G. Lilburn, M. J. McCaughey, G. J. Olsen, R. Overbeek, S. Pramanik, T. M. Schmidt, J. M. Tiedje, and C. R. Woese. 1999. A new version of the RDP (Ribosomal Database Project). Nucleic Acids Res. 27: 171- 173 
    6. Almeida, J. S, M. A. M. Reis, and M. J. T. Carrondo. 1995. Competition between nitrate and nitrite reduction in denitrification by Pseudomonas fluorescens. Biotechnol. Bioeng. 46: 476- 484 
    7. Braker, G., A. Fesefeldt, and K. P. Witzel. 1998. Development of PCR primer systems for amplification of nitrite reductase gene (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl. Environ. Microbiol. 64: 3769-3775 
    8. Fossing, H., V. A. Gallardo, B. B. Jorgensen, M. Muttel, L. P. Nielsen, H. Schulz, D. E. Canfield, S. Foster, R. N. Glud, J. K Gundersen, J. Kuver, N. B. Ramsing, A. Teske, B. Thamdrup, and O. Ulloa. 1996. Concentration and transport of nitrate by the mat-forming sulfur bacterium Thioploca. Nature 374: 713-715 
    9. Etchebehere, C., I. Errazquin, E. Brrandeguy, P. Dabert, R. Moletta, and L. Muxi. 2001. Evaluation of the denitrifying microbiota of anoxic reactors. FEMS Microbiol. Ecol. 35: 259-265 
    10. Ng, W. J., S. L. Ong, and J. Y. Hu. 2001. Denitrifying phosphorus removal by anaerobic/anoxic sequencing batch reactor. Wat. Sci. Tech. 43: 139-146 
    11. Dunbar, J., S. Takala, S. M. Barns, J. A. Davis, and C. R. Kuske. 1999. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl. Environ. Microbiol. 65: 1662- 1669 
    12. Braker, G., J. Zhou, L. Wu, A. H. Devol, and J. M. Tiedje. 2000. Nitrite reductase gene (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in pacific northwest marine sediment communities. Appl. Environ. Microbiol. 66: 2096-2104 
    13. Choi, E. S., Z. Yun, J. W. Lee, and S. O. Chun. 1999. The denitrification of weak sewage at various temperatures, pp. 23- 28. 7th IAWQ Asia-Pacific Regional Conference Proceedings 
    14. APHA, AWWA, WPCF. 1995. Standard Methods for the Examination of Water and Wastewater. American Public Health Association/American Water Work Association/Water Pollution Control Federation. Washington DC, U.S.A. 
    15. Park, E. J., J. K. Seo, J. K. Kim, K. H. Suh, and S. K. Kim. 2000. Denitrification characteristics and microorganism composition of acclimated denitrifier consortium. J. Microbiol. Biotechnol. 10: 410-414 
    16. Geoffrey, B. and J. M. Tiedje. 1992. Isolation and characterization of a nitrite-reduction gene and its use as a probe for de nitrifying bacteria. Appl. Environ. Microbiol. 58: 374- 384 
    17. Both, H., G. Jost, M. Schloter, B. B. Ward, and K. P. Witzel. 2000. Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol. Rev. 24: 673- 690 
    18. Wilderer, P. A., W. L. Jones, and U. Dau. 1987. Competition in denitrification system affecting reduction rate and accumulation of nitrite. Wat. Res. 21: 239- 245 
    19. Koshland, D. E. 1992. The molecule of the year. Science 258: 1861 
    20. Pinar, G., J. M. Oliva, L. Sanchez-Barbero, V. Calvo, and J. L. Ramos. 1998. Removal of nitrate from industrial wastewaters in a pilot plant by nitrate-tolerant Klebsiella oxytoca CECT 4460 and Arthrobacter globiformis CECT 4500. Biotechnol. Bioeng. 58: 510- 514 
    21. Zumft, W. G. 1992. The denitrifying prokaryotes, pp. 554-582. In A. Balows, H. G. Tniper, M. Dworkin, W. Harder, and K.-H. Schleifer (eds.), The Prokaryotes, 2nd edition. Springer- Verlag, Berlin 
    22. Brosius, J., J. L. Palmer, H. P. Kennedy, and H. F. Noller. 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75: 4801-4805 
    23. Park, D. H. and Y. K. Park. 2001. Bioelectrochemical denitrification by Pseudomonas sp. or anaerobic bacterial consortium. J. Microbiol. Biotechnol. 11: 406-411 
    24. Park, J. B., H. W. Lee, S. Y. Lee, J. O. Lee, I. S. Bang, E. S. Choi, D. H. Park, and Y. K. Park. 2002. Microbial community analysis of 5-stage biological nutrient removal process with step feed system. J. Microbiol. Biotechnol. 12: 929- 935     
    25. Hallin, S. and P. Lindgreen. 1999. PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Appl. Environ. Microbiol. 65: 1652- 1657 
    26. Knowles, R. 1982. Denitrification. Microbiol. Rev. 46: 43-70 
    27. Zumft, W. G. 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61: 533-616 
    28. Hutchins, S. R. 1991. Biodegradation of monoaromatic hydrocarbons by aquifer microorganism using oxygen, nitrate, or nitrous oxide as the terminal electron acceptor. Appl. Environ. Microbiol. 57: 2403- 2407 
    29. Kim, J. K, S. K. Kim, and S. H. Kim. 2001. Characterization of immobilized denitrifying bacteria isolated from municipal sewage. J. Microbiol. Biotechnol. 11: 756- 762 

 저자의 다른 논문

  • 이수연 (10)

    1. 1993 "Rhizopus oryzae와 Aspergillus oryzae의 속간 원형질체융합" Korean journal of microbiology = 미생물학회지 31 (3): 218~223    
    2. 1993 "Flavimonas oryzihabitans KU21의 원형질체 생성, 재생 및 융합" Korean journal of microbiology = 미생물학회지 31 (4): 318~325    
    3. 2001 "벤젠과 톨루엔 분해에 적합한 미소환경과 토착미생물군의 분포변화" Korean journal of microbiology = 미생물학회지 37 (1): 85~91    
    4. 2002 "Denitrifying Phosphate Accumulating Organisms (dPAOs)을 이용한 영양소제거 및 반응조내 미생물 분포 조사" Korean journal of microbiology = 미생물학회지 38 (2): 113~118    
    5. 2002 "Toxicity Decrease of Cadmium by the Pigment Produced by Azomonas agilis PY101 in the Culture of Bacterial Cells and Vero Cells" 환경생물 = Korean journal of environmental biology 20 (3): 232~236    
    6. 2002 "Monitoring 4-Chlorobiphenyl-Degrading Bacteria in Soil Microcosms by Competitive Quantitative PCR" The journal of microbiology 40 (4): 274~281    
    7. 2002 "Microbial Community Analysis of 5-Stage Biological Nutrient Removal Process with Step Feed System" Journal of microbiology and biotechnology 12 (6): 929~935    
    8. 2004 "Denaturing Gradient Gel Electrophoresis Analysis of Bacterial Populations in 5-Stage Biological Nutrient Removal Process with Step Feed System for Wastewater Treatment" The journal of microbiology 42 (1): 1~8    
  • Lee, Sang-Hyeon (2)

  • Park, Yong-Keun (54)

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기