본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of microbiology and biotechnology v.15 no.1, 2005년, pp.161 - 174   피인용횟수: 5

Construction of Comprehensive Metabolic Network for Glycolysis with Regulation Mechanisms and Effectors

JIN, JONG-HWA    (Department of Chemical Engineering, Kwangwoon University   ); JUNG, UI-SUB    (Department of Chemical Engineering, Kwangwoon University   ); JAE, WOOK-NAM    (School of Chemical Engineering, Seoul National University   ); IN, YONG-HO    (Bioinformatix Inc., Eighth Floor, Sung Woo Bldg.   ); LEE, SANG-YUP    (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology   ); LEE, DOHE-ON    (Department of Biosystems, Korea Advanced Institute of Science and Technology   ); LEE, JIN-WON    (Department of Chemical Engineering, Kwangwoon University  );
  • 초록

    Abstract Glycolysis has a main function to provide ATP and precursor metabolites for biomass production. Although glycolysis is one of the most important pathways in cellular metabolism, the details of its regulation mechanism and regulating chemicals are not well known yet. The regulation of the glycolytic pathway is very robust to allow for large fluxes at almost constant metabolite levels in spite of changing environmental conditions and many reaction effectors like inhibitors, activating compounds, cofactors, and related metal ions. These changing environmental conditions and metabolic reaction effectors were focused on to understand their roles in the metabolic networks. In this study, we have investigated for construction of the regulatory map of the glycolytic metabolic network and tried to collect all the effectors as much as possible which might affect the glycolysis metabolic pathway. Using the results of this study, it is expected that a complex metabolic situation can be more precisely analyzed and simulated by using available programs and appropriate kinetic data.


  • 주제어

    Glycolysis .   metabolic pathway .   inhibitors .   activating.  

  • 참고문헌 (31)

    1. Green, F. C. and R. E. Feeney. 1970. Properties of muscle glyceraldehyde-3-phosphate dehydrogenase from the coldadapted antarctic fish Dissostichus mawsoni. Biochim. Biophvs. Acta 220: 430- 442 
    2. http://www.biocarta.com/genes/allPathways.asp 
    3. http://www.genome.ad.jp/kegg/metabolism.html 
    4. http://www.gwu.edu/-mpb/ 
    5. http://www.informatics.jax.org/searches 
    6. http://www.tcd.ie/Biochemistry/IUBMB-Nicholson/ 
    7. Hynne, F., P. G. Sorensen, and T. Moller. 1993. Current and eigenvector analysis of chemical reaction networks at Hopf bifurcations. J. Chem. Phys. 98: 211- 218 
    8. Lee, C. S. and W. J. O'Sullivan. 1975. Properties and mechanism of human erythrocyte phosphoglycerate kinase. J. Biol. Chem. 250: 1275- 1281 
    9. Montignv, C. and J. Sygusch. 1996. Functional characterization of an extreme thermophilic class II fructose 1,6-bisphosphate aldolase. Eur. J. Biochem. 241: 243- 248 
    10. Stocchi, V. M., F. C. Magnani, and G. Fomaini. 1982. Multiple forms of human red blood cell hexokinase: Preparation, characterization, and age dependence. J. Biol. Chem. 257: 2357- 2364 
    11. Flynn, I. W. and I. B. R. Bowman. 1980. Purification and characterization of pyruvate kinase from Trypanosoma brucei. Arch. Biochem. Biophys. 200: 401- 409 
    12. http://www.empproject.com/ 
    13. http://www.brenda.uni-koeln.de/ 
    14. http://biocyc.org/ 
    15. Lee, S. Y., S. H. Hong, and S. Y. Moo. 2002. In silico metabolic pathway analysis and design: Succinic acid production by metabolically engineered Escherichia coli an example. Genome Informatics 13: 214- 223 
    16. Goldberg, R. N. 1999. Thermodynamics of enzymecatalyzed reaction: Part 6. Update. J. Phys. Chem. 28: 931-965 
    17. Sakai, H., K. Suzuki, and K. lmahori. 1986. Purification and properties of pyruvate kinase from Bacillus stearothennophilus. J. Biochem. 99: 1157- 1167 
    18. Nakagawa, T. and F. Nagayama. 1991. Enzymatic properties of enolase from fish muscle. Comp. Biochem. Physiol. 98: 355- 359 
    19. Thomas, D. A. 1981. Partial purification and characterization of glucose-6-phosphate isomerase from Dictyostelium discoideum. J. Gen. Microbiol. 124: 403- 407 
    20. Fell, D. 1997. Understanding the Control of Metabolism, pp. 197 - 219. Portland Press Ltd., London, U.K 
    21. Fujita, S. C., T. Oshima, and K. Imahori. 1976. Purification and properties of D-glyceraldehyde-3-phosphate dehydrogenase from an extreme thermophile, Thermus thermophilus strain HB8. Eur. J. Biochem. 64: 57- 68 
    22. Hynne, F., S. Dano, and P. G. Sorensen. 2001. Full-scale model of glycolysis in Saccharomyces cerevisiae. J. Biol. Chem. 94: 121- 163 
    23. Cornpbell, N. A., L. G. Mitchell, and J. B. Reece. 1999. Biology, pp. 518- 519. 3rd Ed. San Francisco, U.S.A 
    24. Stephanopoulos, G. N., A. Aristidou, and J. Nielsen. 1998. Metabolic Engineering: Principles and Methodologies, pp. 38- 45. Academic Press, San Diego, U.S.A 
    25. Babul, J. D., C. M. Kretschmer, and D. G. Fraenkel. 1993. Glucose metabolism in Escherichia coli and the effect of increased amount of aldolase. Biochemistry 32: 4685- 4692 
    26. Goldberg, R. N. and Y. B. Tewari. 1995. Thermodynamics of enzyme-catalyzed reactions: Part 5. Isomerases and ligases. J. Phys. Chem. 24: 1765- 1801 
    27. Goldberg, R. N., and Y. B. Tewari. 1995. Thermodynamics of enzyme-catalyzed reactions: Part 1. Lyases. J. Phys. Chem. 24: 1669- 1698 
    28. Marcel, H. N., J. C. Hoefnagel, D. M. Starrenburg, M. K. Jeroen Hugenholtz, V. R. Iris, V. W. Hans, and L. S. Jacky. 2002. Metabolic engineering of lactic acid bacteria the combined approach: Kinetic modeling metabolic control and experimental analysis. Microhiology 148: 1003- 1013 
    29. Goldberg, R. N., Y. B. Tewari, D. K. Bell, and J. A. Fazio. 1993. Thermodynamics of enzyme-catalyzed reactons: Part l. Oxidoreductases. J. Phys. Chem. 22: 505- 582 
    30. Pelzer, R. B., S. Wiegand, and C. Scharrenberger. 1994. Plastid class and cytosol class II aldolase of Euglena gracilis. Plant Physiol.106: 1137-1144 
    31. Kombrink, E. 1982. Chloroplast phosphofructokinase in the green alga, Dunaliella marina: Partial purification and kinetic and regulatory properties. Arch. Biochern. Biophys. 213: 602-619 
  • 이 논문을 인용한 문헌 (5)

    1. Jung, Ui-Sub ; Lee, Hye-Won ; Lee, Jin-Won 2005. "Study of in Silico Simulation Method for Dynamic Network Model in Lactic Acid Bacteria" 제어·자동화·시스템공학 논문지 = Journal of control, automation and systems engineering, 11(10): 823~829     
    2. 2005. "" Biotechnology and bioprocess engineering, 10(5): 400~407     
    3. 2006. "" Journal of microbiology and biotechnology, 16(5): 748~756     
    4. 2007. "" Journal of microbiology and biotechnology, 17(11): 1789~1796     
    5. 2007. "" Journal of microbiology and biotechnology, 17(3): 496~510     

 저자의 다른 논문

  • 진종화 (1)

    1. 2005 "In Silico Analysis of Lactic Acid Secretion Metabolism through the Top-down Approach: Effect of Grouping in Enzyme kinetics" Biotechnology and bioprocess engineering 10 (5): 462~469    
  • Lee, Sang-Yup (35)

  • Lee, Doheon (1)

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기