본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of microbiology and biotechnology v.15 no.1, 2005년, pp.125 - 130   피인용횟수: 1

Comparative Studies on Growth and Phosphatase Activity of Endolithic Cyanobacterial Isolates of Chroococcidiopsis from Hot and Cold Deserts

BANERJEE, MEENAKSHI    (Laboratory of Algal Biotechnology, Department of Bioscience, Barkatullah University   ); DEBKUMARI, SHARMA    (Laboratory of Algal Biotechnology, Department of Bioscience, Barkatullah University  );
  • 초록

    The growth and phosphatase (phosphomonoesterase) activity of Chroococcidiopsis culture isolated from the cryptoendoliths of the Antarctic were compared with a similar isolate from the Arizona hot desert. Such cyanobacteria living inside rocks share several features with the immobilized cells produced in the laboratory. This study has relevance because the availability of phosphorus is a key factor influencing the growth of these cyanobacteria in nature, in such unique ecological niches as the hot and cold deserts. Phosphatase activity therefore is of particular importance for these organisms if they are to survive without any other source of phosphorus availability. Also, there is paucity of knowledge regarding this aspect of study in cyanobacterial cultures from these extreme environments. The salient feature of this study shows the importance of specific pH and temperatures for growth and phosphatase activity of both cultures, although there were marked differences between the two isolates. The pH and temperature optima for growth and phosphatase activity (PMEase) of Chroococcidiopsis 1 and 2 were 9.5, $240^{\circ}C$ and 8.5, $40^{\circ}C$ respectively. The $K_m and V_max$ values of cultured Chroococcidiopsis 1 showed lower affinity of PMEase for the substrate compared to the enzyme affinity of the same organism when found within the rocks; Chroococcidiopsis 2 and Arizona rocks containing the same alga however showed similar affinity of PMEase for the substrate. An interesting observation was the similarity in response of immobilized Chroococcidiopsis 1 culture and the same organism in the Antarctic rocks to low light and low temperature stimulation of PMEase. This thermal response seems to be related to the ability of the immobilized Antarctic isolate and the rocks to either cryoprotect the PMEase or undergo a change to save the enzyme from becoming nonfunctional under low temperatures. The free cells of Chroococcidiopsis 1 culture however did not show such responses.


  • 주제어

    Chroococcidiopsis .   endolithic .   cyanobacteria .   phosphomonoesterase .   immobilization .   whole communities .   Antarctic .   Arizona.  

  • 참고문헌 (31)

    1. Avrarnescu, A., R. Rouillon, and R. Carpentier. 1999. Potential for use of a cyanobacterium Synechocystis sp. immobilized in poly vinyl alcohol: Application to the detection of pollutants. Biotechnology Techniques 13(8): 559- 562 
    2. Banerjee, M., B. A. Whitton, and D. D. Wynn-Williams. 2000. Phosphatase activities of endolithic communities in rocks of Antarctic dry valleys. Microb. Ecol. 39: 80- 91 
    3. Eisenreich, S. J., R. T. Bannerman, and D. E. Amstrong. 1975. A simplified phosphorus analysis technique. Environ. Lett. 9: 43- 53 
    4. Mahasneh. I. A, S. L. J. Grainger, and B. A Whitton. 1990. Influence of salinity on hair formation and phosphatase activity of the blue green alga (Cyanobacterium) Calothrix viguieri D253. Br. Phycol. J. 25: 25- 32 
    5. Marker, A. F. H. 1995. Chlorophyll Analysis, Standard Methods. National Rivers Authority, Bristol, U.K. 
    6. McKay, C. P., E. I. Friedmann, B. Gomez-Silva, L. Caceres-Villanueva, D. T. Anderson, and R. Landheim. 2003. Temperature and moisture conditions for life in the extreme arid region of the Atacama desert: Four years of observations including the EL Nino of 1997- 1998. Astrobiology 3(2): 393-406 
    7. Nienow, J. A and E. I. Friedmann. 1993. Terrestriallithophytic (rock) communities, pp. 353-412. In E. I. Friedmann (ed.), Antarctic Microbiology. Wiley-Liss, New York, U.S.A. 
    8. Singh, S. P., S. K. Verma, R. K. Singh, and P. K. Pandey. 1989. Copper uptake by free and immobilized cyanobacterium. FEMS Microbiol. Lett. 60: 193- 196 
    9. Whitton, B. A., S. L. J. Grainger, G. R. W. Hawley, and J. W. Simon. 1991. Cell bound and extracellular phosphatase activities of cyanobacterial isolates. Microb. Ecol. 21: 85-98 
    10. Wilkinson, S. C., K. H. Goulding, and P. K. Robinson. 1990. Mercury removal by immobilized algae in batch culture systems. J. Appl. Phycol. 2: 223- 230 
    11. Williams, D. D. 2000. Cyanobacteria in desert-life at limits, pp. 341- 366. In Whitton, B. A and M. Potts M (eds.), Ecology of Cyanobacteria: Their Diversity in Time and Space. Kluwer, Dordrecht 
    12. Chu, S. P. 1942. The influence of mineral composition of the medium on the growth of planktonic algae. I. Methods and culture media. J. Ecol. 30: 284- 325 
    13. Kratz, W. A and J. Myers. 1955. Nutrition and growth of several blue green algae. Am. J. Bot. 42: 282- 287 
    14. Cockell, C. S., P. Rettberg, G. Horneck, M. R. Patel, H. Lamrner, and C. Cordoba-Jabonero. 2002. Ultrviolet protection in micro-habitats; lessons from the terrestrial poles applied to Mars. ESA SP 518: 215- 218 
    15. Romo, S. and C. Perez Martinez. 1997. The use of immobilization in alginate beads for long-term storage of Pseudoanabaena galeata (Cyanobacteria) in the laboratory. J. Phycol. 33: 1073- 1076 
    16. Vincent, W. F. 1988. Microbial Ecosystems of Antarctica. Cambridge University Press, Cambridge Press, pp. 304 
    17. Budel, B., U. Luttge, R. Stelzer, O. Huber, and E. Medina. 1994. Cyanobacteria of rocks and soil of the Orinoco lowlands and the Guayana uplands, Venezuela. Botanica Acta 107: 422- 431 
    18. Friedmann, E. I. and R. Ocampo. 1976. Endolithic blue green algae in the Dry Valley. Primary producers in the Antarctic desert ecosystem. Science 193: 1247- 1249 
    19. Ronto, G., A Berces, H. Larnrner, C. S. Cockell, G. J. Molina-Cuberos, M. R. Patel, and F. Selsis. 2003. Solar UV irradiation conditions on the surface of Mars. Photochem. Photobiol. 77(1): 34- 40 
    20. Banerjee, M., B. A. Whitton, and D. D. Wynn-Williams. 2000. Surface phosphomonoesterase activity of a natural immobilized system: Chroococcidiopsis in an Antarctic desert rock. J. Appl. Phycol. 12: 549- 552 
    21. Friedmann, E. I. 1982. Endolithic microorganism in the Antarctic cold desert. Science 215: 1045- 1053 
    22. Gibson, M. T. and B. A. Whitton. 1987. Influence of phosphorus on morphology and physiology of fresh water Chaetophora, Drapamaldia and Stigeoclonium (Chaetophorales, chlorophyta). Phycologia 26: 59- 69 
    23. Fischer, D., U. G. Schlosser, and P. Pohl. 1997. Exopolysaccharide production by cyanobacteria grown in enclosed photobioreactors and immobilized using white cotton towelling. J. Appl. Phycol. 9: 205-213 
    24. Mackinney, G. 1941. Absorption of light by chlorophyll. J. Biol. Chem. 140: 315- 322 
    25. Patel, M. R., A. Berces, C. Kolb, P. Rettberg, J. C. Zarnecki, and F. Selsis. 2003. Seasonal and diurnal variation in Martian surface UV irradiation: Biological and chemical implications for the Martian regolith. Int. J. Astrobiol. 2(1): 21-34 
    26. Wynn-Williams, D. D., N. C. Russell, and H. G. M. Edwards. 1997. Moisture and habitat structure as regulator for microalgal colonists in diverse Antarctic terrestrial habitats, pp. 77- 88. In W. B. Lyons, C. Howard-Williams, and I. Hawes (eds.), Ecosystems in Antarctic Ice free Landscapes. Balkerna, Rotterdam 
    27. Bell, R. A. and M. R. Sommerfield. 1987. Algal biomass and primary production within a temperature zone sandstone. Am. J. Bot. 74: 294- 297 
    28. Friedmann, E. I. 1978. Melting snow in the Dry Valley is the source of water for endolithic microorganisms. Antarct. J. U. S. 13: 162- 163 
    29. de la Torre, J. R., B. M. Goebel, E. L. Friedmann, and N. R. Pace. 2003. Microbial diversity of cryptoendolithic communities from the McMurdo dry valleys Antarctica. Appl. Environ. Microbiol. 69(7): 3858- 3867 
    30. Friedmann, E. I., A. Y. Druk, and C. P. Mckay. 1994. Limits of life and microbial extinction in the antarctic desert. Antarct. J. U. S. 29: 176- 179 
    31. Potts, M. 1994. Desiccation resistance of prokaryotes. Microbiol. Rev. 58: 755- 805 
  • 이 논문을 인용한 문헌 (1)

    1. 2006. "" Journal of microbiology and biotechnology, 16(7): 1060~1067     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기