본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of microbiology and biotechnology v.15 no.1, 2005년, pp.80 - 85   피인용횟수: 9

Electrochemical Control of Metabolic Flux of Weissella kimchii sk10: Neutral Red Immobilized in Cytoplasmic Membrane as Electron Channel

PARK, SUN-MI    (Department of Biological Engineering, Seokyeong University   ); KANG, HYE-SUN    (Department of Biological Engineering, Seokyeong University   ); PARK, DAE-WON    (Division of Water Environment and Remediation, KIST   ); PARK, DOO-HYUN    (Department of Biological Engineering, Seokyeong University  );
  • 초록

    Electrochemical control of the metabolic flux of W. kimchii sk10 on glucose and pyruvate was studied. The growing cell of W. kimchii sk10 produced 87.4 mM lactate, 69.3 mM ethanol, and 4.9mM lactate from 83.1mM glucose under oxidation condition of the anode compartment, but 98.9 mM lactate, 84.3mM ethanol, and 0.2 mM acetate were produced from 90.8 mM glucose under reduction condition of the cathode compartment for 24 h, respectively. The resting cell of W. kimchii sk10 produced 15.9 mM lactate and 15.2 mM acetate from 32.1 mM pyruvate under oxidation condition of the anode compartment, and 71.3 mM lactate and 3.8 mM acetate from 79.8mM pyruvate under reduction condition of the cathode compartment. The redox balance (NADH/ $NAD^+$ ) of metabolites electrochemically produced from pyruvate was 1.05 and 18.76 under oxidation and reduction conditions, respectively. On the basis of these results, we suggest that the neutral red (NR) immobilized in bacterial membrane can function as an electron channel for the electron transfer between electrode and cytoplasm without dissipation of membrane potential, and that the bacterial fermentation of W. kimchii sk10 can be shifted to oxidized or reduced pathways by the electrochemical oxidation or reduction, respectively.


  • 주제어

    Weissella kimchii .   metabolic flux shift .   electrochemical oxidation-reduction (redox) .   $NR_red$ (reduced form of neutral red) .   $NR_ox$ (oxidized form of neutral red).  

  • 참고문헌 (34)

    1. Hongo, M. and M. Iwahara. 1979. Application of electronenergizing method to L-glutamic acid fermentation. Agric. Biol. Chem. 43A: 2075- 2081 
    2. Kang, H. S. and D. H. Park. 2004. Biocatalytic oxidationreduction of pyruvate and ethanol by Weissella kimchii sk10 under aerobic and anaerobic condition. J. Microbiol. Biotechnol. 14: 914-918 
    3. Kim, B. H. and J. G. Zeikus. 1992. Hydrogen metabolism in Clostridium acetobutylicum fermentation. J. Microbiol. Biotechnol. 2: 2771- 2776 
    4. Lee, Y. J., K. H. Cho, and Y. J. Kim. 2003. The membranebound NADH: Ubiquinone oxidoreductase in the aerobic respiratory chain of marine bacterium Pseudomonas nautical. J. Microbiol. Biotechnol. 13: 225- 229 
    5. Park, D. H. and J. G. Zeikus. 2000. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66: 1292- 1297 
    6. Park, S. M. and D. H. Park. 2004. Metabolic flux shift of Weissella kimchii sk10 grown under aerobic conditions. J. Microbiol. Biotechnol.14: 919-923     
    7. Schlereth, D. D. and V. M. Fernandez. 1992. Direct electron transfer between Alcaligenes eutrophus Z-1 hydrogenase and glassy carbon electrodes. Bioelectrochem. Bioenerg, 28: 473- 482 
    8. Surya, A., N. Murthy, and S. Anita. 1994. Tetracyanoquinodimethane (TCNQ) modified electrode for NADH oxidation. Bioelectrochem. Bioenerg. 33: 71-73 
    9. Thauer, R. K., K. Jungermann, and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100- 180 
    10. Thestrup, H. N. and B. Hahn-Hagerdal. 1995. Xylitol formation and reduction equivalent generation during anaerobic xylose conversion with glucose as cosubstrate in recombinant Saccharomycess cerevisiae expressing the xyll gene. Appl. Environ. Microbiol. 61: 2043- 2045 
    11. Varma, A. and B. O. Palsson. 1994. Metabolic flux balancing: Basic concepts, scientific and practical use. Review. Bio/ Technology 12: 994- 998 
    12. Kemner, J. M. and J. G. Zeikus. 1992. Purification and characterization of membrane-bound hydrogenase from Methanosarcina barkeri MS. Arch. Microbiol. 161: 47- 54 
    13. Collins, M. D., J. Samelis, J. Metaxopoulos, and S. Wallbanks. 1993. Taxonomic studies on some Leuconostoc-like organisms from fermented sausages: Description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J. Appl. Bacteriol. 75: 595- 603 
    14. Wissenbach, U. A. Kroger, and G. Unden. 1990. The specific functions of menaquinone and demethylmenaquinone in anaerobic respiration with fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate by Escherichia coli. Arch. Microbiol. 154: 60- 66 
    15. Sucheta, A., R. Cammack, J. H. Weiner, and F. A. Armstrong. 1993. Reversible electrochemistry of fumarate reductase immobilized on an electrode surface. Direct voltammetric observation of redox centers and their participation in rapid catalytic electron transport. Biochemistry 32: 5455- 5465 
    16. Dickie, P. and J. Weiner. 1979. Purification and characterization of membrane-bound fumarate reductase from anaerobically grown Escherichia coli. Can. J. Biochem. 57: 813- 821 
    17. Willner, I., E. Katz, and N. Lapidot. 1992. Bioelectrocatalysed reduction of nitrate utilizing poly thiophene bipyridium enzyme electrodes. Bioelectrochem. Bioenerg. 29: 29-45 
    18. Girbal, L., I. Vasconcelos, A. Silvie Saint, and P. Soucaille. 1995. How neutral red modified carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH. FEMS Microbiol. Rev. 16: 151-162 
    19. Millard, C. S., Y. P. Chao, J. C. Liao, and M. I. Donnelly. 1996. Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli. Appl. Environ. Microbiol. 62: 1808- 1810 
    20. Kim, T. W., J. Y. Lee, S. H. Jung, Y. M. Kim, J. S. Jo, D. K. Chung, H. J. Lee, and H. Y. Kim. 2002. Identification and distribution of predominant lactic acid bacteria in kimchi, a Korean traditional fermented food. J. Microbiol. Biotechnol. 12: 635- 642 
    21. Samuelov, N. S., R. Lamed, S. Lowe, and J. G. Zeikus. 1991. Influence of $CO_{2}-HCO^{-}_{3}$ levels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succinidiproducens. Appl. Environ. Microbiol. 57: 3013- 3019 
    22. Xie, Y. and S. Dong. 1992. Effects of pH on the electron transfer of cytochrome-c on a gold electrode modified with bis(4pyridyl) disulphide. Bioelectrochem. Bioenerg. 29: 71-79 
    23. Kotner, C., F. Lauterbach, D. Tripier, G. Unden, and A. Kroger. 1990. Wolinella succinogenes fumarate reductase contains a dihaem cytochrome b. Mol. Microbiol. 4: 855- 860 
    24. Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403- 2410 
    25. Cecchini, G., C. R. Thompson, B. A. Ackrell, D. J. Westenberg, N. Dean, and R. P. Gunsalus. 1986. Oxidation of reduced meanquinone by the fumarate reductase complex in Escherichia coli requires the hydrophobic FrdD peptide. Proc. Natl. Acad. Sci. USA 83: 8898- 8902 
    26. Hongo, M. and M. Iwahara. 1979. Determination of electroenergizing conditions for L-glutamic acid fermentation. Agric. Biol. Chem. 43B: 2083- 2086 
    27. Park, D. H. and J. G. Zeikus. 2003. Improved fuel cell and electrode designs for producing from microbial degradation. Biotechnol. Bioeng, 81: 348- 355 
    28. Sanchez, S., A. Arratia, R. Cordova. H. Gomez, and R. Schrebler. 1995. Electron transport in biological processes. II. Electrochemical behavior of Q10 immersed in a phospholipid matrix added on a pyrolytic graphite electrode. Bioelectrochem. Bioenerg, 36: 67-71 
    29. Hong, S. H., S. Y. Moon, and S. Y. Lee. 2003. Prediction of maximum yields of metabolites and optimal pathways for their production by metabolic flux analysis. J. Microbiol. Biotechnol. 13: 571- 577     
    30. Kim, T. W., S. H. Jung, J. Y. Lee, S. K. Choi, S. H. Park, J. S. Jo, and H. Y. Kim. 2003. Identification of lactic acid bacteria in kimchi using SDS-PAGE profiles of whole cell proteins. J. Microbiol. Biotechnol. 13: 119- 124     
    31. Lee, J. W., A. Goel, M. M. Ataai, and M. M. Domach. 2002. Flux regulation patterns and energy audit of E. coli B/r and K-12. J. Microbiol. Biotechnol. 12: 258- 267     
    32. Wissenbach, U., D. Thernes, and G. Unden, 1992. An Escherichia coli mutant containing only demethylmenaquinone, but not menaquinone: Effects on fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate respiration. Arch. Microbiol. 158: 68-73 
    33. Miyawaki, O. and T. Yano. 1992. Electrochemical bioreactor with regeneration of $NAD^{+}$ by rotating graphite disk electrode with PMS absorbed. Enzyme Microb. Technol 14: 474- 478 
    34. White, H., H. Lebertz, I. Thanons, and H. Simon. 1987. Clostridium thermoaceticum production of methanol from carbon monoxide in the presence of viologen dyes. FEMS Microbiol. Lett. 43: 173- 176 
  • 이 논문을 인용한 문헌 (9)

    1. 2006. "" Journal of microbiology and biotechnology, 16(6): 993~998     
    2. 2007. "" Journal of microbiology and biotechnology, 17(2): 218~225     
    3. 2007. "" Journal of microbiology and biotechnology, 17(3): 445~453     
    4. 2008. "" Biotechnology and bioprocess engineering, 13(6): 677~682     
    5. 2009. "" Journal of microbiology and biotechnology, 19(7): 666~674     
    6. 2009. "" Journal of microbiology and biotechnology, 19(8): 836~844     
    7. 2009. "" Journal of microbiology and biotechnology, 19(9): 1019~1027     
    8. 2010. "" Journal of microbiology and biotechnology, 20(1): 94~100     
    9. 2010. "" Journal of microbiology and biotechnology, 20(3): 485~493     

 저자의 다른 논문

  • Park Sun Mi (3)

    1. 2004 "Biocatalytic Oxidation-Reduction of Pyruvate and Ethanol by Weissella kimchii sk10 Under Aerobic and Anaerobic Conditions" Journal of microbiology and biotechnology 14 (5): 914~918    
    2. 2004 "Metabolic Flux Shift of Weissella kimchii sk10 Grown Under Aerobic Conditions" Journal of microbiology and biotechnology 14 (5): 919~923    
    3. 2005 "Electrochemical Reduction of Xylose to Xylitol by Whole Cells or Crude Enzyme of Candida peltata" The journal of microbiology 43 (5): 451~455    
  • KANG, HYE-SUN (2)

  • Park, Doo-Hyun (46)

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기