본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Renal Precursor Cell Transplantation Using Biodegradable Polymer Scaffolds

KIM , SANG-SOO    (Department of Chemical Engineering, Hanyang University, Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University   ); PARK, HEUNG-JAE    (Department of Urology, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University   ); HAN, JOUNG-HO    (Department of Pathology, Samsung Medical Center, School of Medicine, Sungkyunkwan University   ); PARK, MIN-SUN    (Department of Chemical Engineering, Hanyang University   ); PARK, MOON-HYANG    (Department of Pathology, College of Medicine, Hanyang University   ); SONG, KANG-WON    (Department of Pathology, College of Medicine, Hanyang University   ); JOO, KWAN-JOONG    (Department of Urology, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University   ); CHOI, CHA-YONG    (Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, School of Chemical Engineering, Seoul National University   ); KIM, BYUNG-SOO    (Department of Chemical Engineering, Hanyang University  );
  • 초록

    End-stage renal disease is a fatal and devastating disease that is caused by progressive and irreversible loss of functioning nephrons in the kidney. Dialysis and renal transplantation are the common treatments at present, but these treatments have severe limitations. The present study investigated the possibility of reconstructing renal tissues by transplantation of renal precursor cells to replace the current treatments for end-stage renal disease. Embryonic renal precursor cells, freshly isolated from metanephroi of rat fetus at day 15 post-gestation, were seeded on biodegradable polymer scaffolds and transplanted into peritoneal cavities of athymic mice for three weeks. Histologic sections stained with hematoxylin & eosin and periodic acid-Schiff revealed the formation of primitive glomeruli, tubules, and blood vessels, suggesting the potential of embryonic renal precursor cells to reconstitute renal tissues. Immunohistochemical staining for proliferating cell nuclear antigen, a marker of proliferating cells, showed intensive nuclear expression in the regenerated renal structures, suggesting renal tissue reconstitution by transplanted embryonic renal precursor cells. This study demonstrates the reconstitution of renal tissue in vivo by transplanting renal precursor cells with biodegradable polymer scaffolds, which could be utilized as a new method for partial or full restoration of renal structure and function in the treatment of end-stage renal disease.


  • 주제어

    Tissue engineering .   renal precursor cell .   biodegradable polymer scaffold.  

  • 참고문헌 (24)

    1. Dekel, B., T. Burakova, H. Ben-Hur, H. Marcus, R. Oren, J. Laufer, and Y. Reisner. 1997. Engraftment of human kidney tissue in rat radiation chimera II: Human fetal kidneys display reduced immunogenicity to adoptively transferred human peripheral blood mononuclear cells and exhibit rapid growth and development. Transplantation 64: 1550-1558 
    2. Dekel, B., N. Arnariglio, N. Kaminski, A. Schwartz, E. Goshen, F. D. Arditti, I. Tsarfaty, J. H. Passwell, Y. Reisner, and G. Rechavi. 2002. Engraftment and differentiation of human metanephroi into functional mature nephrons after transplantation into mice is accompanied by a profile of gene expression similar to normal human kidney development. J. Am. Soc. Nephrol. 13: 977- 990 
    3. Hammerman, M. R. 2002. Transplantation of developing kidneys. Transplant. Rev. 16: 62- 71 
    4. Kim, B. S., S. I. Jeong, S. W. Cho, J. Nikolovski, D. J. Mooney, S. H. Lee, O. Jeon, T. W. Kim, S. H. Lim, Y. S. Hong, C. Y Choi, Y. M. Lee, S. H. Kim, and Y. H. Kim. 2003. Tissue engineering of smooth muscle under a mechanically dynamic condition. J. Microbiol. Biotechnol. 13: 841- 845     
    5. Koseki, C., D. Herzlinger, and Q. Al-Awqati. 1991. Integration of embryonic nephrogenic cells carrying a reporter gene into functioning nephrons. Am. J. Physiol. 261: C550- C554 
    6. Oliver, J. A., J. Barasch, J. Yang, D. Herzlinger, and Q. AlAwqati. 2002. Metanephric mesenchyme contains embryonic renal stem cells. Am. J. Physiol. Renal Physiol. 283: F799-F809 
    7. Lanza, R. P, H. Y. Chung, J. J. Yoo, P. J. Wettstein, C. Blackwell, N. Borson, E. Hofmeister, G. Schuch, S. Soker, C. T. Moraes, M. D. West, and A. Atala. 2002. Generation of histocompatible tissues using nuclear transplantation. Nature Biotechnol. 20: 689- 696 
    8. Langer, R. and J. P. Vacanti. 1993. Tissue engineering. Science 260: 920- 926 
    9. Hammerman, M. R. 2003. Tissue engineering the kidney. Kidney Int. 63: 1195- 1204 
    10. Kim, D. I., H. J. Park, H. S. Eo, S. W. Suh, J. H. Hong, M. J. Lee, J. S. Kim, I. S. Jang, and B. S. Kim. 2004. Comparati ve study of seeding and culture methods to vascular smooth muscle cells on biodegradable scaffold. J. Microbiol. Biotechnol. 14: 707-714     
    11. Santavirta, S., Y. T. Konttinen, T. Saito, M. Gronblad, E. Partio, P. Kernppinen, and P. Rokkanen. 1990. Immune response to polyglycolic acid implants. J. Bone Joint Surg. Br. 72: 597- 600 
    12. Humes, D. H., D. A. Buffington, S. M. MacKay, A. J. Funke, and W. F. Weitzel. 1999. Replacement of renal function in uremic animals with a tissue engineered kidney. Nature Biotechnol. 17: 451- 455 
    13. Kim, B. S., D. J. Mooney, and A. Atala. 2000. Genitourinary system, pp. 655-667. In R. P. Lanza, R. Langer, and J. Vacanti (eds.), Principles of Tissue Engineering, Academic Press, San Diego, California, U.S.A. 
    14. Rogers, S. A., J. A. Lowell, N. A. Hammerman, and M. R. Hammerman. 1998. Transplantation of developing metanephroi into adult rats. Kidney Int. 54: 27- 37 
    15. Kim, S. K., S. H. Yu, J. H. Lee, J. Y Lee, A. Rademacher, D. H. Lee, and J. K. Park. 2001. Effect of collagen concentration on the viability and metabolic function of encapsulated hepatocytes. J. Microbiol. Biotechnol. 11: 423- 427 
    16. Lee, D. H., J. H. Lee, J. E. Choi, Y. J. Kim, S. K. Kim, and J. K. Park. 2002. Determination of optimum aggregates of porcine hepatocytes as a cell source of a bioartificialliver. J. Microbiol. Biotechnol. 12: 735- 739     
    17. Al-Awqati, Q. and J. A. Oliver. 2002. Stem cells in the kidney. Kidney Int. 61: 387- 395 
    18. Hyink, D. P., D. C. Tucker, P. L. St. John, V. Leardkamolkarn, M. A. Accavitti, C. K. Abrass, and D. R. Abrahamson. 1996. Endogenous origin of glomerular endothelial and mesangial cells in grafts of embryonic kidneys. Am. J. Physiol. 270: F886-F889 
    19. Kun, N. and K. H. Park. 2004. Immobilization of Arg-GlyAsp (RGD) sequence in sugar-containing copolymer for culturing fibroblast cells. J. Microbiol. Biotechnol. 14: 193-196     
    20. MacKay, S. M., A. J. Funke, D. A. Buffington, and H. D. Humes. 1998. Tissue engineering of a bioartificial renal tubule. Am. Soc. Artif. Intern. Organs J. 44: 179- 183 
    21. Dekel, B., T. Burakova, F. D. Arditti, S. Reich-Zeliger, O. Milstein, S. Aviel-Ronen, G. Rechavi, N. Friedman, N. Kaminski, J. H. Pass well, and Y. Reisner. 2003. Human and porcine early kidney precursors as a new source for transplantation. Nature Med. 9: 53- 60 
    22. Amiel, G. E. and A. Atala. 1999. Current and future modalities for functional renal replacement. Urol. Clin. North Am. 26: 235- 246 
    23. Woolf, A. S., S. J. Palmer, M. L. Snow, and L. G. Fine. 1990. Creation of a functioning chimeric mammalian kidney. Kidney Int. 38: 991- 997 
    24. Yoo, J. J., T. G. Kwon, and A. Atala. 2002. Intracorporeal kidney, pp. 999- 1003. In A. Atala, and R. P Lanza, (eds.), Methods of Tissue Engineering: Academic Press, San Diego, California, U.S.A. 

 저자의 다른 논문

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기