본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of plant biotechnology v.7 no.1, 2005년, pp.17 - 25  

Simple Sequence Repeat (SSR) and GC Distribution in the Arabidopsis thaliana Genome

Mortimer Jennifer C    (Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University, Victorian Bioinformatics Consortium, Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University, Department of Plant Sciences, University of Cambridge   ); Batley Jacqueline    (Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University   ); Love Christopher G    (Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University, Victorian Bioinformatics Consortium, Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University   ); Logan Erica    (Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University, Victorian Bioinformatics Consortium, Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University   ); Edwards David    (Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University, Victorian Bioinformatics Consortium, Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University  );
  • 초록

    We have mined each of the five A. thaliana chromosomes for the presence of simple sequence repeats (SSRs) and developed custom perl scripts to examine their distribution and abundance in relation to genomic position, local G/C content and location within and around transcribed sequences. The distribution of repeats and G/C content with respect to genomic regions (exons, UTRs, introns, intergenic regions and proximity to expressed genes) are shown. SSRs show a non-random distribution across the genome and a strong association within and around transcribed sequences, while G/C density is associated specifically with the coding portions of transcribed sequences. SSR motif repeat number shows a high degree of variation for each SSR type and a high degree of motif sequence bias reflecting local genome sequence composition. PCR primers suitable for the amplification of identified SSRs have been designed where possible, and are available for further studies.


  • 주제어

    Arabidopsis .   GC distribution .   Genome Structure .   Genome topology .   Simple Sequence Repeat (SSR).  

  • 참고문헌 (35)

    1. Abajian C (1994) SPUTNIK 
    2. Kantety RV, La Rota M, Matthews DE, Sorrells ME (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48: 501-510 
    3. Nanda I, Zischler H, Epplen C, Gutlenbach M, Schmid M (1991) Chromosomal organisation of simple repeated DNA Sequences used for DNA fingerprinting. Electrophoresis 12: 193-203 
    4. Sreenu VB, Alevoor V, Nagaraju J, Nagarajaram HA (2003) MICdb: database of prokaryotic microsatellites. Nucleic Acids Res 31: 106-108 
    5. Xu X, Peng M, Fang Z, Xu X (2000) The direction of microsatellite mutations is dependent upon allele length. Nat Genet 24: 396-399 
    6. Tautz D, Renz M (1984) Simple sequences as ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12: 4127-4138 
    7. Varshney RK, Thiel T, Stein N, Langridge P, Graner A (2002) In silica analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol Biol Lett 7: 537-546 
    8. Weber JL (1990) Informativeness of human $(DC-DA)_n. (DG-DT)_n$ polymorph isms. Genomics 7: 524-530 
    9. Moxon ER, Wills C (1999) DNA Microsatellites: Agents of Evolution. Sci Am 280: 94-99 
    10. Khashnobish A, Hamann A, Osiewacz HD (1999) Modulation of gene expression by (CA)(n) microsatellites in the filamentous ascomycete Podospora anserina. Applied Microbiol Biotech 52: 191-195 
    11. Robinson AJ, Love CG, Batley J, Barker G, Edwards 0 (2004) Simple sequence repeat marker loci discovery using SSRPrimer. Bioinformatics (In Press) 
    12. Katti MV, Ranjekar PK, Gupta VS (2001) Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 18: 1161-1167 
    13. Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1: 215-222 
    14. Pardue ML, Lowenhaupt K, Rich A, Nordheim A (1987) (DCDA)N.(DG-DT)N sequences have evolutionarily conserved chromosomal locations in Drosophila with implications for roles in chromosome structure and function. EMBO J 6: 1781-1789 
    15. Ross CL, Dyer KA, Erez T, Miller SJ, Jaenike J, Markow TA (2003) Rapid divergence of microsatellite abundance among species of Drosophila. Mol Biol Evol 20: 1143-1157 
    16. Dieringer D, Schlotterer C (2003) Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species. Genome Res 1: 2242-2251 
    17. Holland JB, Hellend SJ, Sharopova N, Rhyne DC (2001) Polymorphism of PCR based markers targeting exons, introns, promoter regions, and SSRs in maize and introns and repeat sequences in oat. Genome 44: 1065-1076 
    18. Lowenhaupt KY, Rich A, Pardue ML (1989) Nonrandom distribution of long mono-nucleotide and dinucleotide repeats in Drosophila chromosomes - correlations with dosage compensation, heterochromatin and recombination. Mol Cell Biol 9: 1173-1182 
    19. Awadalla P, Ritland K (1997) Microsatellite variation and evolution in the Mimulus guttatus species complex with contracting mating systems. Mol Biol Evol 14: 1023-1034 
    20. Brandes A, Thompson H, Dean C, Heslop-Harrison JS (1997) Multiple repetitive DNA sequences in the paracentromeric regions of Arabidopsis thaliana L. Chromosome Res 5: 238-246 
    21. Gupta M, Chyi Y-S, Romero-Severson J, Owen JL (1994) Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor Appl Genet 89: 998-1006 
    22. Li Y-C, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11: 2453-2465 
    23. Schlotterer C (2000) Evolutionary dynamics of microsatellite DNA. Nucleic Acids Res 20: 211-215 
    24. Ramsay L, Macaulay M, Cardle L, Morgante M, degli Ivanissevich S, Maestri E, Powell W, Waugh R (1999) Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant J 17: 415-425 
    25. Schmidt T, Heslop-Harrison JS (1996) The physical and genomic organisation of microsatellites in sugar beet. Proc Natl Acad Sci USA 93: 8761-8765 
    26. Schlctlerer C, Pemberton J (1994) The use of microsatellites for genetic analysis of natural populations. In: Scheirwater B, Streit B, Wagner GP, DeSalie R, (eds), Molecular Ecology and Evolution: Approaches and Applications. Birkhauser Verlag Basel, Switzerland, pp 71-86 
    27. Kashi Y, King D, Soller M (1997) Simple sequence repeats as a source of quantitative genetic variation. Trends Genet 13: 74-78 
    28. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815 
    29. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with non repetitive DNA in plant genomes. Nat Genet 30: 194-200 
    30. Borstnik B, Pumpernik D (2002) Tandem repeats in protein coding regions of primate genes. Genome Res 12: 909-915 
    31. Subramanian S, Mishra RK, Singh L (2003) Genome-wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions. Genome Biol 4: R13 
    32. Barakat A, Han DT, Benslimane AA, Rode A, Bernadi G (1999) The gene distribution in the genomes of pea, tomato and date palm. FEBS Lett 463: 139-142 
    33. Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17: 6463-6471 
    34. Toth G, Gaspari Z, Jurka J (2000) Microsatellites in different eukaryotic genomes:survey and analysis. Genome Res 10: 967-981 
    35. Arhondakis S, Auletta F, Torelli G, D'Onofrio G (2004) Base composition and expression level of human genes. Gene 325: 165-169 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기