본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Effect of Calmodulin on Ginseng Saponin-Induced $Ca^{2+}$-Activated $Cl^{-}$ Channel Activation in Xenopus laevis Oocytes

Lee Jun-Ho    (Research Laboratory for the Study of Ginseng Signal Transduction and Department of Physiology, College of Veterinary Medicine, Konkuk University   ); Jeong Sang-Min    (Research Laboratory for the Study of Ginseng Signal Transduction and Department of Physiology, College of Veterinary Medicine, Konkuk University   ); Lee Byung-Hwan    (Research Laboratory for the Study of Ginseng Signal Transduction and Department of Physiology, College of Veterinary Medicine, Konkuk University   ); Kim Jong-Hoon    (Research Laboratory for the Study of Ginseng Signal Transduction and Department of Physiology, College of Veterinary Medicine, Konkuk University   ); Ko Sung-Ryong    (KT & G Central Research Institute   ); Kim Seung-Hwan    (Department of Exercise Science, College of Natural Science, Chungbuk National University   ); Lee Sang-Mok    (Research Laboratory for the Study of Ginseng Signal Transduction and Department of Physiology, College of Veterinary Medicine, Konkuk University   ); Nah Seung-Yeol    (Research Laboratory for the Study of Ginseng Signal Transduction and Department of Physiology, College of Veterinary Medicine, Konkuk Univ  );
  • 초록

    We previously demonstrated the ability of ginseng saponins (active ingredients of Panax ginseng) to enhance $Ca^{2+}$ -activated $Cl^{-}$ current. The mechanism for this ginseng saponin-induced enhancement was proposed to be the release of $Ca^{2+}$ from $IP_{3}-sensitive$ intracellular stores through the activation of PTX-insensitive $G\alpha_{q/11}$ proteins and PLC pathway. Recent studies have shown that calmodulin (CaM) regulates $IP_{3}$ receptor-mediated $Ca^{2+}$ release in both $Ca^{2+}-dependent$ and -independent manner. In the present study, we have investigated the effects of CaM on ginseng saponin-induced $Ca^{2+}$ -activated $Cl^{-}$ current responses in Xenopus oocytes. Intraoocyte injection of CaM inhibited ginseng saponin-induced $Ca^{2+}$ -activated $Cl^{-}$ current enhancement, whereas co-injection of calmidazolium, a CaM antagonist, with CaM blocked CaM action. The inhibitory effect of CaM on ginseng saponin-induced $Ca^{2+}$ -activated $Cl^{-}$ current enhancement was dose- and time-dependent, with an $IC_{50} of 14.9\pm3.5 {\mu}M$ . The inhibitory effect of CaM on saponin's activity was maximal after 6 h of intraoocyte injection of CaM, and after 48 h the activity of saponin recovered to control level. The half-recovery time was calculated to be $16.7\pm4.3 h$ . Intraoocyte injection of CaM inhibited $Ca^{2+}$ -induced $Ca^{2+}$ -activated $Cl^{-}$ current enhancement and also attenuated $IP_{3}$ -induced $Ca^{2+}$ -activated $Cl^{-}$ current enhancement. $Ca^{2+}$ /CaM kinase II inhibitor did not inhibit CaM-caused attenuation of ginseng saponin-induced $Ca^{2+}$ -activated $Cl^{-}$ current enhancement. These results suggest that CaM regulates ginseng saponin effect on $Ca^{2+}$ -activated $Cl^{-}$ current enhancement via $Ca^{2+}$ -independent manner.


  • 주제어

    Panax ginseng .   Calmodulin .   Xenopus oocytes.  

  • 참고문헌 (26)

    1. Choi, S., Rho, S. H., Jung, S. Y., Kim, S. C., Park, C. S., and Nah, S. Y., A novel activation of $Ca^{2+}$-activated $Cl^{-}$ channel in Xenopus oocytes by ginseng saponins: evidence for the involvement of phospholipase C and intracellular $Ca^{2+}$ mobilization. Br. J. Pharmacol., 132, 641-648 (2001a) 
    2. Choi, S., Kim, H. J., Ko, Y. S., Jeong, S. W., Kim, Y. I., Simonds, W. F., Oh, J. W., and Nah, S. Y., $G\alpha_{q/11}$ coupled to mammalian phospholipase C b3-like enzyme mediates the ginsenoside effect on $Ca^{2+}$-activated $Cl^-$ current in the Xenopus oocyte. J. Biol. Chem., 276, 48797-48802 (2001b) 
    3. Dascal, N., Yekuel, R., and Oron, Y., Acetylcholine promotes progesterone-induced maturation of Xenopus oocytes. J. Exp. Zool., 230, 131-135 (1984) 
    4. Matifat, F., Fournier, F., Lorca, T., Capony, J. P., Brule, G.., and Collin, T., Involvement of the $Ca^{2+}$/calmodulin protein kinase II pathway in the $Ca^{2+}$-mediated regulation of the capacitative $Ca^{2+}$ entry in Xenopus oocytes. Biochem. J., 322, 267-272 (1997) 
    5. Nah, S. Y., Ginseng, recent advances and trend. Korea J. Ginseng Sci., 21, 1-12 (1997) 
    6. Parekh A. B., Interaction between capacitative $Ca^{2+}$ influx and $Ca^{2+}$-dependent $Cl^-$ currents in Xenopus oocytes. Pflugers Arch-Eur. J. Physiol., 430, 954-963 (1995) 
    7. Sienaert, I., Kasri, N. N., Vanlingen, S. Parys, J. B., Callewaert, G., Messeian, L., and de Smedt, L., Localization and function of a calmodulin/apocalmodulin binding domain in the Nterminal part of the type-1 inositol 1,4,5-trisphosphate receptor. Biochem. J., 365, 269-277 (2002) 
    8. Lechleiter, J. D. and Clapham, D. E., Molecular mechanisms of intracellular calcium excitability in Xenopus laevis oocytes. Cell, 69, 283-294 (1992) 
    9. Adkins, C. E., Morris, S. A., De Smedt, H., Sienaert, I., Torok, K., and Taylor, C. W., $Ca^{2+}$-calmodulin inhibit $Ca^{2+}$ release mediated by type-1, -2, and -3 inositol trisphosphate receptors. Biochem. J., 345, 357-363 (2000) 
    10. Parekh, A. B. and Penner, R., Store depletion and calcium influx. Physiol. Rev., 77, 901-930 (1997) 
    11. Hartzell, H. C., Activation of different $Cl^-$ currents in Xenopus oocytes by Ca liberation from stores and by capacitative Ca Influx. J. Gen. Physiol., 108, 157-175 (1996) 
    12. Jeong, S. M., Lee, J. H., Kim, S., Rhim, H., Lee B. H., Kim, J. H., Oh, J. W., and Lee, S. M., Ginseng saponins induce store-operated calcium entry in Xenopus oocytes. Br. J. Pharmacol., 142, 585-593 (2004) 
    13. Berridge, M. J. and Irvine, R. F., Inositol triphosphates and cell signalling. Nature, 341, 197-205 (1989) 
    14. Berridge, M. J., Bootman, M. D., and Lipp, P., Calcium - a life and death signal. Nature (Lond.), 395, 645-648 (1998) 
    15. Taylor, C. W. and Laude, A. J., $IP_3$ receptors and their regulation by calmodulin and cytosolic $Ca^{2+}$. Cell Calcium, 32, 321-334 (2002) 
    16. Yamada, M., Miyawaki, A., Saito, K., Nakajima, M., Yamamoto- Hino, Y., Ryo, T., Furuichi, T., and Mikoshiba, K., The calmodulin-binding domain in the mouse type 1 inositol 1,4,5- trisphosphate receptor. Biochem. J., 308, 83-88 (1995) 
    17. Cardy, T. J. A. and Taylor, C. W., A novel role for calmodulin: $Ca^{2+}$-independent inhibition of type-1 inositol trisphosphate receptors. Biochem. J., 334, 447-455 (1998) 
    18. Fukunaga, K., Miyamoto, E., and Soderling T. R., Regulation of $Ca^{2+/}$calmodulin-dependent protein kinase II by brain gangliosides. J. Neurochem., 54, 103-109 (1990) 
    19. Gnegy, M. E., Calmodulin in neurotransmitter and hormone action. Ann. Rev. Pharmacol. Toxicol., 33, 45-70 (1993) 
    20. Missiaen, L., Parys, J. B., Weidema, A. F., Sipma, H., Valingen, S., De Smet, P., Callewaert, G., and De Smedt, H., The bellshaped $Ca^{2+}$ dependence of the inositol 1,4,5-trisphosphateinduced $Ca^{2+}$ release is modulated by $Ca^{2+}$/calmodulin. J. Biol. Chem., 274, 13748-13751 (1999) 
    21. Waxham, M. N. and Aronowski, J., $Ca^{2+}$/calmodulin-dependent protein kinase II is phosphorylated by protein kinase C in vitro. Biochemistry, 32, 2923-2930 (1993) 
    22. Kuruma, A. and Hartzell, H. C., Dynamics of calcium regulation of chloride currents in Xenopus oocytes. Am. J. Physiol., 276, C161-C175 (1999) 
    23. Parys, J. B., Sernett, S. W., DeLisle, S., Snyder, P. M., Welsh, M. J., and Campbell, K. P., Isolation, characterization, and localization of the inositol 1,4,5-triphosphate receptor protein in Xenopus laevis oocytes. J. Biol. Chem., 267, 18776-18782 (1992) 
    24. Kasri, N. N., Bultynck, G., Sienaert, I., Callewaert, G., Erneux, C., Missiaen, L., Pary, J. B., and De Smedt, H., The role of calmodulin for inositol 1,4,5-trisphosphate receptor function. Biochim. Biophys. Acta, 1600, 19-31 (2002) 
    25. Lee, J. H., Jeong, S. M., Lee, B. H., Kim, D. H., Kim, J. H., Kim, J. I., and Nah, S. Y., Prevention of ginsenoside-induced desensitization of $Ca^{2+}$-activated $Cl^-$ currents by microinjection of inositol hexakisphosphate ($InsP_6$) in Xenopus laevis oocytes: involvement of GRK2 and $\beta-arrestin$ I. J. Biol. Chem., 279, 9912-9921 (2004) 
    26. Liu, M., Chen, T. Y., Ahamed, B., Li, J., and Yau, K. W., Calciumcalmodulin modulation of the olfactory cyclic nucleotide gated cation channel. Science, 266, 1348-1354 (1994) 
  • 이 논문을 인용한 문헌 (1)

    1. 2011. "" Journal of ginseng research = 高麗人參學會誌, 35(1): 92~103     

 저자의 다른 논문

  • Lee, Jun-Ho (9)

    1. 2003 "Differential Effect of Bovine Serum Albumin on Ginsenoside Metabolite-Induced Inhibition of ${\alpha}3{\beta}4$ Nicotinic Acetylcholine Receptor Expressed in Xenopus Oocytes" Archives of pharmacal research : a publication of the Pharmaceutical Society of Korea 26 (10): 868~873    
    2. 2005 "Effects of Korean Red Ginseng Extract on Cisplatin-Induced Nausea and Vomiting" Archives of pharmacal research : a publication of the Pharmaceutical Society of Korea 28 (6): 680~684    
    3. 2005 "Xenopus laevis oocytes에서 진세노사이드에 의하여 활성화되는 Ca2+-activated Cl- 이온 통로의 유전자 클로닝, 조직 분포 및 채널 특성" Journal of ginseng research = 高麗人參學會誌 29 (4): 167~175    
    4. 2006 "Ginsentology I: Differential Ca2+ Signaling Regulations by Ginsenosides in Neuronal and Non-neuronal cells" Journal of ginseng research = 高麗人參學會誌 30 (2): 57~63    
  • Jeong, Sang-Min (12)

  • 이병환 (13)

  • Lee, Sang-Mok (20)

  • Nah, Seung-Yeol (29)

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기