본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

MINIMAL QUADRATIC RESIDUE CYCLIC CODES OF LENGTH $2^{n}$

BATRA, SUDHIR  
  • 초록

    Let F be a finite field of prime power order q(odd) and the multiplicative order of q modulo $2^{n}\;(n>1)\;be\; {\phi}(2^{n})/2$ . If n > 3, then q is odd number(prime or prime power) of the form $8m{\pm}3$ . If q = 8m - 3, then the ring $R_{2^n} = F[x]/ $ has 2n primitive idempotents. The explicit expressions for these primitive idempotents are obtained and the minimal QR cyclic codes of length $2^{n}$ generated by these idempotents are completely described. If q = 8m + 3 then the expressions for the 2n - 1 primitive idempotents of $R_{2^n}$ are obtained. The generating polynomials and the upper bounds of the minimum distance of minimal QR cyclic codes generated by these 2n-1 idempotents are also obtained. The case n = 2,3 is dealt separately.


  • 주제어

    Cyclotomic cosets .   minimal cyclic codes .   quadratic residue codes .   generating polynomials .   primitive idempotents.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 한국전산응용수학회 : 저널
유료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기