본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Biotechnology and bioprocess engineering v.10 no.2, 2005년, pp.162 - 165   피인용횟수: 5

Efficient Elicitation of Ginsenoside Biosynthesis in Cell Cultures of Panax notoginseng by Using Self-chemically-synthesized Jasmonates

Wang Wei    (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology   ); Zhao Zhen-Jiang    (Shanghai Key Laboratory of Chemical Biology, Institute of Pesticides and Pharmarceuticals, East China University of Science and Technology   ); Xu Yufang    (Shanghai Key Laboratory of Chemical Biology, Institute of Pesticides and Pharmarceuticals, East China University of Science and Technology   ); Qian Xu hong    (Shanghai Key Laboratory of Chemical Biology, Institute of Pesticides and Pharmarceuticals, East China University of Science and Technology   ); Zhong Jian-Jiang    (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology  );
  • 초록

    A series of fluorine and hydroxyl containing jasmonate derivatives, which were chemically synthesized in our institute, were investigated for their effects on the biosynthesis and heterogeneity of ginsenosides in suspension cultures of Panax notoginseng cells. Com-pared to the control (without addition of elicitors), $100{\mu}M$ of each of the jasmonate was added on day 4 to the suspension cultures of P. notoginseng cells. It was observed that, jasmonates greatly enhanced the ginsenoside content and the ratio of Rb group to Rg group (i.e. $(Rb_1\;+\;Rd)/(Rg_1\;+\;Re)$ in the P. notoginseng cells. Some of the synthetic jasmonates, such as pentafluoropropyl jasmonate (PFPJA), 2-hydroxyethyl jasmonate (HEJA) and 2-hydroxye-thoxyethyl jasmonate (HEEJA), could promote the ginsenoside content to $2.55\;\pm\;0.11,\;3.65\;\pm\;0.13\;and\;2.94\;\pm\;0.06$ mg/100 mg DW, respectively, compared to that of $0.64\;\pm\;0.06$ mg/100 mg DW for the control and $2.17\;\pm\;0.04$ mg/100 mg DW by the commercially available methyl jasmonate (MJA); and they could change the respective Rb:Rg ratio to $1.60\;\pm\;0.04,\;1.87\;\pm\;0.01\;and\;1.56\;\pm\;0.05$ , compared to that of $0.47\;\pm\;0.01$ for the control and $1.42\;\pm\;0.06$ by MJA. The results suggest that suitable esterification of MJA with fluorine or hydroxyl group could in-crease the elicitation activity to induce plant secondary metabolism. The information obtained from this study is useful for hyper-production of heterogeneous products by plant cell cultures.


  • 주제어

    Panax notoginseng .   chemically synthesized jasmonates .   ginsenoside .   heterogeneous secondary metabolites.  

  • 참고문헌 (21)

    1. Palazon, J., R. M. Cusido, M. Bonfill, A. Mallol, E. Moyano, C. Morales, and M. T. Pinol (2003) Elicitation of different Panax ginseng transformed root phenotypes for an improved ginsenoside production. Plant Physiol. Biochem. 41: 1019-1025 
    2. Zabetakis, I., R. Edwards, and D. O'Hagan (1999) Elicitation of tropane alkaloid biosynthesis in transformed root cultures of Datura stramonium. Phytochemistry 50: 53-56 
    3. Yu, K. W., W. Y. Gao, E. J. Hahn, and K. Y. Peak (2002) Jasmonic acid improving ginsenoside accumulation in adventitious root culture of Panax ginseng C. A. Meyer. Biochem. Eng. J. 11: 211-215 
    4. Qian, Z. G., Z. J. Zhao, Y. Xu, X. Qian, and J. J. Zhong (2004) Novel chemically synthesized hydroxyl-containing jasmonates as powerful inducing signals for plant secondary metabolism. Biotechnol. Bioeng. 86: 809-816 
    5. Qian, Z. G., Z. J. Zhao, W. H. Tian, Y. Xu, J. J. Zhong, and X. Qian (2004) Novel synthetic jasmonates as highly efficient elicitors for taxoid production by suspension cultures of Taxus chinensis. Biotechnol. Bioeng. 86: 595-599 
    6. Zhang, Z. Y. and J. J. Zhong (2004) Scale-up of centrifugal impeller bioreactor for hyperproduction of ginseng saponin and polysaccharide by high-density cultivation of Panax notoginseng cells. Biotechnol. Prog. 20: 1076-1081 
    7. Hu, W. W., H. Yao, and J. J. Zhong (2001) Improvement of Panax notoginseng cells for production of ginseng saponin and polysaccharide by high cell density cultivation in pneumatically agitated bioreactors. Biotechnol. Prog. 17: 838-846 
    8. Han, J. and J. J. Zhong (2002) High density cell culture of Panax notoginseng for production of ginseng saponin and polysaccharide in an airlift bioreactor. Biotechnol. Lett. 24: 1927-1930 
    9. Wang, W., Z. Y. Zhang, and J. J. Zhong (2005) Enhancement of ginsenoside biosynthesis in high density cultivation of Panax notoginseng cells by various strategies of methyl jasmonate elicitation. Appl. Microbiol. Biotechnol. (in press) 
    10. Yukimune, Y., H. Tabata, Y. Higashi, and Y. Hara (1996) Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nature Biotechnol. 14: 1129-1132 
    11. Staniszewska, I., A. Krolicka, E. Malinski, E. Lojkowska, and J. Szafranek (2003) Elicitation of secondary metabolites in in vitro cultures of Ammi majus L. Enzyme Microbiol. Technol. 33: 565-568 
    12. Wu, J. and L. Lin (2002) Elicitor-like effects of lowenergy ultrasound on plant Panax ginseng cells: induction of plant defense responses and secondary metabolite production. Appl. Microbiol. Biotechnol. 59: 51-57 
    13. Dong, H. D. and J. J. Zhong (2001) Significant improvement of taxane production in suspension cultures of Taxus chinensis by combining elicitation with sucrose feed. Biochem. Eng. J. 8: 145-150 
    14. Plata, N., I. Konczak-Islam, S. Jayram, K. McClelland, T. Woolford, and P. Franks (2003) Effect of methyl jasmonate and p-coumaric acid on anthocyanin composition in a sweet potato cell suspension culture. Biochem. Eng. J. 14: 171-177 
    15. Verpoorte, R., R. van der Heijden, H. J. G. ten Hoopen, and J. Memelink (1999) Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotechnol. Lett. 21: 467-479 
    16. Ketchum, R. E. B., D. M. Gibson, R. B. Croteau, and M. L. Shuler (1999) The kinetics of taxoid accumulation in cell suspension cultures of Taxus following elicitation with methyl jasmonate. Biotechnol. Bioeng. 62: 97-105 
    17. Zhong, J. J. (1999) High-density cell cultivation and manipulation of heterogeneity of plant secondary metabolites. APBioChEC. plenary lecture, Thailand 
    18. Yukimune, Y., Y. Hara, E. Nomura, H. Seto, and S. Yoshida (2000) The configuration of methyl jasmonate affects paclitaxel and baccatin III production in Taxus cells. Phytochemistry 54: 13-17 
    19. Sheludko, Y., I. Gerasimenko, M. Unger, I. Kostenyuk, and J. Stoeckigt (1999) Induction of alkaloid diversity in hybrid plant cell cultures. Plant Cell Rep. 18: 911-918 
    20. Wang, W. and J. J. Zhong (2002) Manipulation of ginsenoside heterogeneity in cell cultures of Panax notoginseng by addition of jasmonates. J. Biosci. Bioeng. 93: 48-53 
    21. Zhong, J. J. (2002) Plant cell culture for production of paclitaxel and other taxanes. J. Biosci. Bioeng. 94: 591-599 
  • 이 논문을 인용한 문헌 (5)

    1. Yang, Seung-Joon ; Woo, Koan-Sik ; Yoo, Jeong-Sik ; Kang, Tae-Su ; Noh, Young-Hee ; Lee, Jun-Soo ; Jeong, Heon-Sang 2006. "Change of Korean Ginseng Components with High Temperature and Pressure Treatment" 한국식품과학회지 = Korean journal of food science and technology, 38(4): 521~525     
    2. 2006. "" Biotechnology and bioprocess engineering, 11(5): 442~448     
    3. Kim, Jin-Ho ; Kwon, Ki-Rok ; Lee, Eun-Hee ; Cha, Bae-Chun 2006. "" 大韓藥鍼學會誌 = Journal of Korean pharmacopuncture institute, 9(3): 117~129     
    4. 2007. "" Biotechnology and bioprocess engineering, 12(6): 594~600     
    5. 2007. "" Biotechnology and bioprocess engineering, 12(6): 653~661     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기