본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

An analytical solution for finitely long hollow cylinder subjected to torsional impact

Wang, X.    (Department of Engineering Mechanics, The School of Civil Engineering and Mechanics, Shanghai Jiaotong University   ); Wang, X.Y.    (Department of Engineering Mechanics, The School of Civil Engineering and Mechanics, Shanghai Jiaotong University   ); Hao, W.H.    (Department of Engineering Mechanics, The School of Civil Engineering and Mechanics, Shanghai Jiaotong University  );
  • 초록

    An analytical method is presented to solve the elastodynamic problem of finitely long hollow cylinder subjected to torsional impact often occurs in engineering mechanics. The analytical solution is composed of a solution of quasi-static equation satisfied with the non-homogeneous boundary condition and a solution of dynamic equation satisfied with homogeneous boundary condition. The quasi-static solution is obtained directly by solving the quasi-static equation satisfied with the non-homogeneous boundary condition. The solution of the non-homogeneous dynamic equation is obtained by means of finite Hankel transform on the radial variable, r, Laplace transform on time variable, t, and finite Fourier transform on axial variable, z. Thus, the solution for finitely long, hollow cylinder subjected to torsion impact is obtained. In the calculating examples, the response histories and distributions of shear stress in the finitely long hollow cylinder subjected to an exponential decay torsion load are obtained, and the results have been analyzed and discussed. Finally, a dynamic finite element for the same problem is carried out by using ABAQUS finite element analysis. Comparing the analytical solution with the finite element solution, it can be found that two kinds of results obtained by means of two different methods agree well. Therefore, it is further concluded that the analytical method and computing process presented in the paper are effective and accurate.


  • 주제어

    torsional impact .   finitely long hollow cylinder .   elastodynamic .   integral transform.  

  • 참고문헌 (17)

    1. Carcione, J.M. and Seriani, G. (1998), 'Torsional waves in lossy cylinders', J. Acoustical Soc. Am., 103, 760-765 
    2. Carcione, J.M. and Flavio, P. (2000), 'Simulation of stress waves in attenuating drill strings including piezoelectric sources and sensors', J. Acoustical Soc. Am., 108, 53-64 
    3. Cho, H., Kardomateas, G.A. and Valle, C.S. (1998), 'Elastodynamic solution for the thermal shock stress in an orthotropic thick cylinder shell', J. Appl. Mech., ASME, 65(1), 184-193 
    4. Cinelli, G. (1966), 'Dynamic vibrations and stress in the elastic cylinders and spheres', J. Appl. Mech., ASME, 825-830 
    5. Clark, S.K. (1956), 'Torsional wave propagation in hollow cylindrical bars', J. Acoustical Soc. Am., 28, 1163-1165 
    6. Eringen, A.C. and Suhubi, E.S. (1975), Elastodynamics, Vol. 2, (Linear Theory) Academic Press. New York 
    7. Gazis, D.C. (1959a), 'Three-dimensional investigation of the propagation of waves in hollow circular cylinders, 1. Analytic foundation', J. Acoustical Soc. Am., 31, 568-573 
    8. Gazis, D.C. (1959b), 'Three-dimensional investigation of the propagation of waves in hollow circular cylinders, II. Analytic foundation', J. Acoustical Soc. Am., 31, 573-578 
    9. Haines, D.W. and Lee, P.C.Y (1971), 'Approximate theory of torsional wave propagation in elastic circular composite cylinders', J. Acoustical Soc. Am., 49, 211-219 
    10. Kim, J.O. and Haim, H.H. (1991), 'Torsional stress waves in a circular cylinder with a modulated surface', J. Appl. Mech., ASME, 58, 710-715 
    11. Lighthill, M.J. (1958), An Introduction to Fourier Analysis and Generalized Function, Cambridge University Press 
    12. Liu, C.G. and Wang, D. (1995), 'Spread problem on torsion wave in a infinite long elastic hollow cylinder', Science Publisher in China 
    13. Pao, Y.H. and Ceranoglu, A.N. (1978), 'Determination of transient responses of a thick-walled spherical shell by the ray theory', J. Appl. Mech., ASME, 45, 114-122 
    14. Soldatos, K.P. and Ye, J.Q. (1994), 'Wave propagation in anisotropic laminated hollow cylinders of infinite extent', J. Acoustics Soc. Am., 96(5), 744-752 
    15. Wang, X., Zhang, K. and Zhang, W. (2000), 'Theoretical solution and finite element solution for an orthotropic thick cylindrical shell under impact load', J. Sound Vib., 236, 129-140 
    16. Armenaakas, A.E. (1965), 'Torsional waves in composite rods', J. Acoustical Soc. Am., 38, 439-446 
    17. Cinelli, G. (1965), 'An extension of the finite Hankel transform and application', Int. J. Engng. Sci., 3, 539-550 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기