본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Structural engineering and mechanics : An international journal v.19 no.4, 2005년, pp.381 - 399   피인용횟수: 1

Piecewise exact solution for analysis of base-isolated structures under earthquakes

Tsai, C.S.    (Department of Civil Engineering, Feng Chia University   ); Chiang, Tsu-Cheng    (Graduate Institute of Civil and Hydraulic Engineering, Feng Chia University   ); Chen, Bo-Jen    (R&D Department, Earthquake Proof System, Inc.   ); Chen, Kuei-Chi    (Graduate Institute of Civil and Hydraulic Engineering, Feng Chia University  );
  • 초록

    Base isolation technologies have been proven to be very efficient in protecting structures from seismic hazards during experimental and theoretical studies. In recent years, there have been more and more engineering applications using base isolators to upgrade the seismic resistibility of structures. Optimum design of the base isolator can lessen the undesirable seismic hazard with the most efficiency. Hence, tracing the nonlinear behavior of the base isolator with good accuracy is important in the engineering profession. In order to predict the nonlinear behavior of base isolated structures precisely, hundreds even thousands of degrees-of-freedom and iterative algorithm are required for nonlinear time history analysis. In view of this, a simple and feasible exact formulation without any iteration has been proposed in this study to calculate the seismic responses of structures with base isolators. Comparison between the experimental results from shaking table tests conducted at National Center for Research on Earthquake Engineering in Taiwan and the analytical results show that the proposed method can accurately simulate the seismic behavior of base isolated structures with elastomeric bearings. Furthermore, it is also shown that the proposed method can predict the nonlinear behavior of the VCFPS isolated structure with accuracy as compared to that from the nonlinear finite element program. Therefore, the proposed concept can be used as a simple and practical tool for engineering professions for designing the elastomeric bearing as well as sliding bearing.


  • 주제어

    exact solution .   rubber bearing .   friction pendulum system .   base isolation .   structural control .   seismic engineering.  

  • 참고문헌 (14)

    1. AI-Hussaini, T.M., Zayas, V.A. and Constantinou, M.C. (1994), 'Seismic isolation of multi-story frame structures using spherical sliding isolation systems', Technical Report, NCEER-94-0007 
    2. Chen, B.J. (2003), 'Characteristic and earthquake-proof benefits of rubber bearings', Ph. D. Dissertation, Graduate Institute of Civil & Hydraulic Engineering, Feng-Chia University, Taichung, Taiwan, R. O. C 
    3. Chopra, Anil K. (1995), Dynamics of Structures, Theory and Applications to Earthquake Engineering, PrenticeHall, Inc 
    4. Constantinou, M., Mokha, M. and Reinhom, A. (1990), 'Teflon bearings in base isolation. II: Modeling', J. Struct. Eng., ASCE, 116(2),455-474 
    5. Nigam, N.C. and Jennings, P.C. (1968), 'Digital calculations of response spectra from strong-motion earthquake records', Earthquake Engineering Research Laboratory, Califomia Institute of Technology, EERL, Pasadena, CA 
    6. Nigam, N.C. and Jennings, P.C. (1969), 'Calculation of response spectra from strong motion earthquake records', Bulletin of the Seismological Society of America, 59, 909-922 
    7. Tsai, C.S. (1995), 'Seismic behavior of buildings with FPS isolators', Second Congress on Computing in Civil Engineering, ASCE, Atlanta, GA, 1203-1211 
    8. Tsai, C.S. (1996), 'Nonlinear stress analysis techniques-NSAT', Feng-Chia University, Department of Civil Engineering, Taichung, Taiwan, R. O. C 
    9. Tsai, C.S., Chen, B.J. and Chiang, T.C. (2002), 'Reasonable lateral force distributions on isolated structures', 2002 ASME Pressure Vessels and Piping Conf. Vancouver, Canada, 2, Edited by S.C. Lu, 229-236 
    10. Tsai, C.S., Chen, B.J. and Chiang, T.C. (2003a), 'Experimental and computational verification of reasonable formulae for based-isolated structures', Earthq. Eng. Struct. Dyn., 32, 1389-1406 
    11. Tsai, C.S., Chiang, T.C. and Chen, B.J. (2003b), 'Finite element formulations and theoretical study for variable curvature friction pendulum system', Eng. Struct., 25, 1719-1730 
    12. Zayas, Victor A., Low, Stanley S. and Mahin, Stephen A. (1987), 'The FPS earthquake resisting system experimental report', Technical Report, UBC/EERC-87/01 
    13. Tsai, C.S., Chiang, T.C., Chen, B.J. and Lin, S.B. (2003c), 'An advanced analytical model for high damping rubber bearings', Earthq. Eng. Struct. Dyn., 32,1373-1387 
    14. Tsai, C.S. (1997), 'Finite element formulations for friction pendulum seismic isolation bearings', Int. J. Numer. Meth. Eng., 40, 29-49 
  • 이 논문을 인용한 문헌 (1)

    1. 2010. "" Structural engineering and mechanics : An international journal, 35(2): 205~215   

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기