본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Wind & structures v.8 no.2, 2005년, pp.89 - 106  

Wind induced vibrations of long electrical overhead transmission line spans: a modified approach

Verma, Himanshu    (Institut fur Mechanik, Technische Universitat Darmstadt   ); Hagedorn, Peter    (Institut fur Mechanik, Technische Universitat Darmstadt  );
  • 초록

    For estimating the vortex excited vibrations of overhead transmission lines, the Energy Balance Principle (EBP) is well established for spans damped near the ends. Although it involves radical simplifications, the method is known to give useful estimates of the maximum vibration levels. For very long spans, there often is the need for a large number of in-span fittings, such as in-span Stockbridge dampers, aircraft warning spheres etc. This adds complexity to the problem and makes the energy balance principle in its original form unsuitable. In this paper, a modified version of EBP is described taking into account in-span damping and in particular also aircraft warning spheres. In the first step the complex transcendental eigenvalue problem is solved for the conductor with in-span fittings. With the thus determined complex eigenvalues and eigenfunctions a modified energy balance principle is then used for scaling the amplitudes of vibrations at each resonance frequency. Bending strains are then estimated at the critical points of the conductor. The approach has been used by the authors for studying the influence of in-span Stockbridge dampers and aircraft warning spheres; and for optimizing their positions in the span. The modeling of the aircraft warning sphere is also described in some detail.


  • 주제어

    energy balance principle .   overhead transmission lines .   Stockbridge damper .   warning sphere .   transcendental eigenvalue problem.  

  • 참고문헌 (20)

    1. EPRI (1979), Transmission Line Reference Book, Wind Induced Conductor Motion, Palo Alto, California: Electrical Power Research Institute. 
    2. Hadulla, T. (2000), Wirbelerregte Schwingungen in Freileitungsbundeln, PhD thesis, Institut fur Mechanik, Technische Universitat Darmstadt, Germany. 
    3. Hagedorn, P. (1980), "Ein einfaches Rechenmodell zur Berechnung winderregter Schwingungen an Hochspannungsleitungen mit Dampfern", Ingenieur-Archiv, 49, 161-177. 
    4. Hagedorn, P. (1982), "On the computation of damped wind excited vibrations of overhead transmission lines", J. Sound Vib., 83(2), 253-271. 
    5. Noiseux, D.U. (1992), "Similarity laws of the internal damping of stranded cables in transverse vibrations", IEEE Transections on Power Delivery, 7(3), 1574-1581, July. 
    6. Rawlins, C.B. (1983), "Wind tunnel measurements of the power imparted to a model of a vibrating conductor", IEEE Transactions on Power Apparatus & Systems, PAS-102(4), 963-971, April. 
    7. Schafer, B. (1981), Zur Entstehung und Unterdruckung winderregter Schwingungen an Freileitungen, PhD thesis, Technische Hochschule Darmstadt, Fachbereich Mechanik. 
    8. Staubli, T. (1979), "An investigation of the fluctuating forces on a transverse-oscillating circular cylinder", In EUROMECH-Colloquium 119, London. 
    9. Verma, H., Chakraborty, G., Krispin, H.J. and Hagedorn, P. (2003), "On the modeling of wind induced vibrations of long span electrical transmission lines", Proceedings of Fifth International Symposium on Cable Dynamics, Santa Margherita, Italy, 53-60, September. 
    10. Allnut, J.G. and Rowbottom, M.D. (1974), "Damping of aeolian vibration on overhead lines by vibration dampers", Proceeding of Institute of Electrical and Electronic Engineers, 121, 1175-1178. 
    11. Bahtovska, E. (2000), "The energy balance for damped wind-excited vibrations", Facta Universitatis, 1(7), 769-773. 
    12. Belloli, M., Cigada, A., Diana, G. and Rocchi, D. (2003), "Wind tunnel investigation on vortex induced vibration of a long flexible cylinder", Proceedings of Fifth International Symposium on Cable Dynamics, Santa Margherita, Italy, 247-254, September. 
    13. Bishop, R.E.D. and Hassan, A.Y. (1964), "The Lift and Drag Forces on a Circular Cylinder in a Flowing Fluid", In Proceedings of the Royal Society of London 277 (Series A), 51-75. 
    14. Brika, D. and Laneville, A. (1995), "A laboratory investigation of the aeolian power imparted to a conductor using a flexible circular cylinder", Proceedings of the Royal Society of London 277(Series A), 23-27, July. 
    15. Chen, S.S. (1987), Flow-Induced Vibration of Circular Cylindrical Structures, Washington, New York, London: Hemisphere Publishing Corporation. 
    16. Claren, R. and Diana, G. (1966), "Vibrazioni dei conduttori", L'Energia Elettrica, 10. 
    17. Cole, J. (1968), Perturbation Methods in Applied Mathematics, Waltham, Mass. 
    18. Dhotarad, M.S., Ganesan, N. and Rao, B.V.A. (1978), "Transmission line vibration", J. Sound Vib., 60, 217-327. 
    19. Diana, G. and Falco, M. (1971), "On the forces transmitted to a vibrating cylinder by a blowing fluid", Mechanica, 6, 9-22. 
    20. Hagedorn, P., Mitra, N. and Hadulla, T. (2002), "Vortex-excited vibrations in bundled conductors: A mathematical model", J. Fluids Struct., 16(7), 843-854. 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기