본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Macromolecular research v.13 no.1, 2005년, pp.45 - 53   피인용횟수: 1

Partially Hydrolyzed Crosslinked Alginate-graft-Polymethacrylamide as a Novel Biopolymer-Based Superabsorbent Hydrogel Having pH - Responsive Properties

Pourjavadi A.    (Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology   ); Amini-Fazi M. S.    (Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology   ); Hosseinzadeh H.    (Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology  );
  • 초록

    In this study, a series of highly swelling hydrogels based on sodium alginate (NaAlg) and polymethacryl­amide (PMAM) was prepared through free radical polymerization. The graft copolymerization reaction was performed in a homogeneous medium and in the presence of ammonium persulfate (APS) as an initiator and N,N'-methylenebis­acrylamide (MBA) as a crosslinker. The crosslinked graft copolymer, alginate-graft-polymethacrylamide (Alg-g­PMAM), was then partially hydrolyzed by NaOH solution to yield a hydrogel, hydrolyzed alginate-graft-poly­methacrylamide (H-Alg-g-PMAM). During alkaline hydrolysis, the carboxamide groups of Alg-g-PMAM were converted into hydrophilic carboxylate anions. Either the Alg-g-PMAM or the H-Alg-g-PMAM was characterized by FTIR spectroscopy. The effects of the grafting variables (i.e., concentration of MBA, MAM, and APS) and the alkaline hydrolysis conditions (i.e., NaOH concentration, hydrolysis time, and temperature) were optimized systematically to achieve a hydrogel having the maximum swelling capacity. Measurements of the absorbency in various aqueous salt solutions indicated that the swelling capacity decreased upon increasing the ionic strength of the swelling medium. This behavior could be attributed to a charge screening effect for monovalent cations, as well as ionic cross-linking for multivalent cations. Because of the high swelling capacity in salt solutions, however, the hydrogels might be considered as anti-salt superabsorbents. The swelling behavior of the superabsorbing hydrogels was also measured in solutions having values of pH ranging from 1 to 13. Furthermore, the pH reversibility and on/off switching behavior, measured at pH 2.0 and 8.0, suggested that the synthesized hydrogels were excellent candidates for the controlled delivery of bioactive agents. Finally, we performed preliminary investigations of the swelling kinetics of the synthesized hydrogels at various particle sizes.


  • 주제어

    hydrogel .   superabsorbent .   sodium alginate .   swelling behavior .   crosslinking.  

  • 참고문헌 (45)

    1. F. A. Dorkoosh, J. Brussee, J. C. Verhoef, G. Borchard, M. Rafeiee-Tehrani, and H. E. Juninger, Polymer, 41, 8213 (2000) 
    2. S. Silong and L. Rahman, J. Appl. Polym. Sci., 76, 516 (2000) 
    3. A. Martinesen, I. Storro, and G. Skjak-Braek, Biotech. Bioeng., 39, 186 (1992) 
    4. G. R. Mitchell and J. M. V. Blanshard, Texture Studies, 7, 219 (1976) 
    5. P. J. Flory, in Principles of Polymer Chemistry, Ithaca, Cornell University Press, New York, 1953 
    6. S. C. Hsu, T. M. Don, and W. Y. Chiu, Polym. Degrad. Stab. 75, 73 (2002) 
    7. A. Pourjavadi, M. Sadeghi, and H. Hosseinzadeh, Polym. Adv. Technol., 15, 1 (2004) 
    8. A. Pourjavadi, R. Mazidi, and H. Hosseinzadeh, J. Appl. Polym. Sci., Submitted (2004) 
    9. J. Chen and Y. Zhao, J. Appl. Polym. Sci., 75, 808 (2000) 
    10. A. Richter, A. Bund, M. Keller, and K. Arndt, Sens. Actuators B, 99, 579 (2004) 
    11. V. D. Athawale and V. Lele, Carbohydr. Polym., 35, 21 (1998) 
    12. S. Lu, M. Duan, and S. Lin, J. Appl. Polym. Sci., 8, 1536 (2003) 
    13. H. Omidian, S. A. Hashemi, P. G. Sammes, and I. Meldrum, Polymer, 40, 1753 (1999) 
    14. D. W. Lim, K. J. Yoon, and S. W. Ko, J. Appl. Polym. Sci., 78, 2525 (2000) 
    15. J. Kost, in Encyclopedia of Controlled Drug Delivery, E. Mathiowitz, Ed., Wiley, New York, 1999, Vol. 1, p. 445 
    16. N. A. Peppas and A. G. Mikes, in Hydrogels in Medicine and Pharmacy, CRC Press, Boca Raton, Florida, 1986, Vol. 1 
    17. R. Lapasin and S. Pricl, in Rheology of Industrial Polysaccharides, Theory and Applications, Blackie, Glasgow, 1995, p. 31 
    18. H. Omidian, S. A. Hashemi, P. G. Sammes, and I. Meldrum, Polymer, 39, 6697 (1998) 
    19. A. Pourjavadi, M. J. Zohuriaan-Mehr, S. N. Ghasempoori, and H. Hossienzadeh, Reac. Func. Polym., submitted (2004) 
    20. A. S. Hoffman, in Polymeric Materials Encyclopedia. J. C. Salamone, Ed., CRC Press, Boca Raton, Florida, 1996, Vol. 5, p. 3282 
    21. United States Department of Agriculture, US Patent 3, 981, 100 (1961) 
    22. R. Po, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., 34, 607 (1994) 
    23. C. K. Nisha, D. Dhara, and P. R. Chatterji, J. M. S. Pure Appl. Chem., A37, 1447 (2000) 
    24. F. L. Buchholz and A. T. Graham, in Modern Superabsorbent Polymer Technology, Wiley, New York, 1997 
    25. A. M. Lowman and N. A. Peppas, in Encyclopedia of Controlled Drug Delivery, E. Mathiowitz, Ed., John Wiley & Sons, New York, 1999, p. 139 
    26. L. H. Gan, G. R. Deen, Y. T. Gan, and K. C. Tam, Eur. Polym. J., 37, 1473 (2001) 
    27. V. D. Athawale and V. Lele, Starch/Starke, 50, 426 (1998) 
    28. L. P. Krul, E. I. Narciko, Y. I. Matusevich, L. B. Yakimtsova, V. Matusevich, and W. Seeber, Polym. Bull., 45, 159 (2000) 
    29. G. Pass, G. O. Philips, and D. J. Wedlock, Macromolecules, 10, 197 (1997) 
    30. K. Burugapalli, D. Bhatia, V. Koul, and V. Choudhary, J. Appl. Polym. Sci., 82, 217 (2001) 
    31. W. F. Lee and W. Y. Yuan, J. Appl. Polym. Sci., 77, 1760 (2000) 
    32. Y. Sugahara and O. Takahisa, J. Appl. Polym. Sci., 82, 1437 (2001) 
    33. W. F. Lee and G. H. Lin, J. Appl. Polym. Sci., 79, 1665 (2001) 
    34. E. Sjostrom, in Wood Chemistry: Fundamental and Applications, Academic Press, 1981, Chap. 9 
    35. G. R. Mahdavinia, A. Pourjavadi, and M. J. Zohuriaan-Mehr, Polym. Adv. Technol., 15, 173 (2004) 
    36. M. Yazdani-Pedram, J. Retuert, and R. Quijada, Macromol. Chem. Phys., 201, 923 (2000) 
    37. M. Yalpani, in Polysaccharides Synthesis, Modifications and Structure/Property Relations, Elsevier, New York, 1998, p. 10 
    38. L. B. Peppas and R. S. Harland, in Absorbent Polymer Technology, Elsevier, Amsterdam, 1990 
    39. H. Hosseinzadeh, A. Pourjavadi, M. J. Zohouriaan-Mehr, and G. R. Mahdavinia, J. Bioact. Compat. Polym., submitted (2004) 
    40. F. L. Buchholz, in Superabsorbent Polymers: Science and Technology, F. L. Buchholz and N. A. Peppas, Eds., ACS Symposium Series 573, American Chemical Society, Washington, DC, 1994 
    41. K. M. Raju, M. P. Raju, and Y. M. Mohan, J. Appl. Polym. Sci., 85, 1795 (2000) 
    42. G. M. Patel and H. C. Trivedi, Eur. Polym. J., 35, 201 (1999) 
    43. J. A. Rowley, G. Madlambayan, and D. J. Mooney, Biomaterials, 20, 45 (1999) 
    44. H. Hosseinzadeh, A. Pourjavadi, and M. J. Zohouriaan-Mehr, J. Biomater. Sci. Polym. Eds., 15, 1499 (2004) 
    45. A. Pourjavadi, A. M. Harzandi, and H. Hossienzadeh, Eur. Polym. J., 40, 1363 (2004) 
  • 이 논문을 인용한 문헌 (1)

    1. 2008. "" Macromolecular research, 16(1): 45~50     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기