본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Biotechnology and bioprocess engineering v.10 no.1, 2005년, pp.34 - 39   피인용횟수: 4

Recovery of Trichloroethylene Removal Efficiency through Short-term Toluene Feeding in a Biofilter Enriched with Pseudomonas putida F1

Jung In-Gyung    (Industrial Liaison Research Institute, Kyung Hee University   ); Park Ok-Hyun    (Department of Environment Engineering, Busan National University   ); Woo Hae-Jin    (Department of Environment Engineering, Busan National University   ); Park Chang-Ho    (Industrial Liaison Research Institute, Kyung Hee University, Department of Chemical Engineering, Kyung Hee University  );
  • 초록

    Trichloroethylene (TCE) is an environmental contaminant provoking genetic mutation and damages to liver and central nerve system even at low concentrations. A practical scheme is reported using toluene as a primary substrate to revitalize the biofilter column for an extended period of TCE degradation. The rate of trichloroethylene (TCE) degradation by Pseudomonas putida F1 at $25^{\circ}C$ decreased exponentially with time, without toluene feeding to a biofilter column ( $11\;cm\;I.D.{\times}95\;cm$ height). The rate of decrease was 2.5 times faster at a TCE concentration of $970\;{\mu}g/L$ compared to a TCE concentration of $110\;{\mu}g/L$ . The TCE itself was not toxic to the cells, but the metabolic intermediates of the TCE degradation were apparently responsible for the decrease in the TCE degradation rate. A short-term (2 h) supply of toluene ( $2,200\;{\mu}g/L$ ) at an empty bed residence time (EBRT) of 6.4 min recovered the relative column activity by $43\%$ when the TCE removal efficiency at the time of toluene feeding was $58\%$ . The recovery of the TCE removal efficiency increased at higher incoming toluene concentrations and longer toluene supply durations according to the Monod type of kinetic expressions. A longer duration ( $1.4{\sim}2.4$ times) of toluene supply increased the recovery of the TCE removal efficiency by $20\%$ for the same toluene load.


  • 주제어

    trichloroethylene .   toluene feeding .   intermediates .   recovery .   Pseudomonas putida F1 .   toluene load.  

  • 참고문헌 (22)

    1. Oldenhuis, R., J. Y. Odedzes, J. J. Waarde, and D. B. Janssen (1991) Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichlorosporium OB3b and toxicity of trichloroethylene. Appl. Environ. Microbiol. 57: 7-14 
    2. Nakamura, Y., M. Daidai, and F. Kobayashi (2004) Bioremediation of phenolic compounds having endocrinedisrupting activity using ozone oxidation and activated sludge treatment. Biotechnol. Bioprocess Eng. 9: 151-155 
    3. Kleopfer, R. D., D. M. Easley, B. B. Hass, Jr. T. G. Deihl, D. E. Jackson, and F. P. Guengerich (1985) Anaerobic degradation of trichloroethylene in soil. Environ. Sci. Technol. 19: 277-280 
    4. Arciero, D., T. Vannelli, M. Logan, and A. B. Hooper (1989) Degradation of trichloroethylene by the ammoniaoxidizing bacterium Nitrosomonas europaea. Biochem. Bioph. Res. Co. 159: 640-643 
    5. Chang, H. L. and L. Alvarez-Cohen (1997) Two stage methanotrophic bioreactor for the treatment of chlorinated organic wastewater. Water Res. 31: 2026-2036 
    6. Sukesan, S. and M. E. Watwood (1997) Continuous vapor- phase trichloroethylene biofiltration using hydrocarbon- enriched compost as filtration matrix. Appl. Microbiol. Biotechnol. 48: 671-676 
    7. Wackett, L. P. and D. Gibson (1988) Degradation of trichloroethylene by toluene dioxygenase in whole cell studies with Pseudomonas putida F1. Appl. Environ. Microbiol. 54; 1703-1708 
    8. Wackett, L. P. and S. R. Householder (1989) Toxicity of trichloroethylene to Pseudomonas putida F1 is mediated by toluene dioxygenase. Appl. Environ. Microbiol. 55: 2723-2725 
    9. Li, S. and L. P. Wackett (1992). Trichloroethylene oxidation by toluene dioxygenase. Biochem. Bioph. Res. Co. 185: 443-451 
    10. Stainer, R. Y., N. J. Palleroni, and M. Doudoroff (1966) The aerobic Pseoudomonas: a taxonomic study. J. Gen. Appl. Microbiol. 43: 159-171 
    11. Vogel, T. M. and P. McCarty (1986) Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl. Environ. Microbiol. 49: 1080-1083 
    12. Dolasa, A. R. and S. J. Ergas (1999) Membrane bioreactor for cometabolism of trichloroethene air emissions. J. Environ. Eng.-ASCE. 126: 969-973 
    13. Ely, R. L., K. J. Williamson, R. B. Guenther, M. R. Hyman, and D. J. Arp (1995) A cometabolic kinetics model incorporation enzyme inhibition, inactivation, and recovery: I. Model development, analysis, and testing. Biotechnol. Bioeng. 46: 218-231 
    14. Zhang, X. H. and R. K. Bajpai (2000) A comprehensive model for the cometabolism of chlorinated solvents. J. Environ. Sci. Health. A35: 229-244 
    15. Lackey, L. W., J. R. Gamble, and J. L. Boles (2002) Bench-scale evaluation of a biofiltration system used to mitigate trichloroethylene contaminated air streams. Adv. in Environ. Res. 7: 97-104 
    16. Hyman, M. R., S. A. Russell, R. L. Ely, K. J. Williamson, and D. J. Arp (1995) Inhibition, inactivation, and recovery of ammonia-oxidizing activity in cometabolism of trichloroethylene by Nitrosomonas europaea. Appl. Environ. Microbiol. 61: 1480-1487 
    17. Cox, C. D., H. J. Woo, and K. G. Robinson (1998) Cometabolic biodegradation of trichloroethylene (TCE) in the gas phase. Water Sci. Technol. 37: 97-104 
    18. Ely, R. L., M. R. Hyman, D. J. Arp, R. B. Guenther, and K. J. Williamson (1995) A cometabolic kinetics model incorporation enzyme inhibition, inactivation, and recovery: II. Trichloroethylene degradation experiments. Biotechnol. Bioeng. 46: 232-245 
    19. Kim, J.-H., W.-H. Jeong, T. B. Karegoudar, and C.-K. Kim (2002) Stable degradation of benzoate by Klebsiella oxytoca C302 immobilized in alginate and polyurethane. Biotechnol. Bioprocess Eng. 7: 347-351 
    20. Lenore, S. C., E. G. Arnold, and D. E. Andrew (1998) Standard Methods for the Examination of Water and Wastewater. 18th ed., American Public Health Association Press, Washington DC, USA 
    21. Pressman, J. G., G. Georgiou, and G. E. Speital (1999) Demonstration of efficient trichloroethylene biodegradation in a hollow fiber membrane bioreactor. Biotechnol. Bioeng. 62: 681-692 
    22. Speital, G. E. Jr. and D. S. McLay (1993) Biofilm reactors for treatment of gas stream containing chlorinated solvents. J. Environ. Eng.-ASCE. 119: 658-678 
  • 이 논문을 인용한 문헌 (4)

    1. Jeong, Gwi-Taek ; Lee, Gwang-Yeon ; Cha, Jin-Myoung ; Park, Don-Hee 2007. "Removal of Hydrogen Sulfide using Reticulated Polyurethan Carrier in Biofilter" 화학공학 = Korean chemical engineering research, 45(4): 372~377     
    2. 2009. "" Biotechnology and bioprocess engineering, 14(2): 248~255     
    3. 2010. "" Biotechnology and bioprocess engineering, 15(3): 505~511     
    4. Sun, Duanfang ; Li, Jianjun ; An, Taicheng ; Xu, Meiying ; Sun, Guoping ; Guo, Jun 2011. "Evaluation of the Performance of Structured Mixed Packing and Inert Packing Materials in Toluene Biotrickle-filtration" Biotechnology and bioprocess engineering, 16(5): 1009~1018     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기