본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Biotechnology and bioprocess engineering v.10 no.1, 2005년, pp.47 - 51   피인용횟수: 1

Selection of Mediators for Bioelectrochemical Nitrate Reduction

Kim Seung Hwan    (Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University   ); Song Seung Hoon    (Bio-MAX Institute, Seoul National University   ); Yoo Young Je    (Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, School of Chemical Engineering, Seoul National University  );
  • 초록

    The bioelectrochemical reduction of nitrate in the presence of various mediators including methyl viologen and azure A was studied using a 3-electrode voltammetric system. The catalytic potential for the reduction of the mediators was observed in the reactor, which for methyl viologen and azure A were -0.74 V and -0.32 V, respectively, with respect to the potential of Ag/AgCl reference electrode. This potential was then applied to a working electrode to reduce each mediator for enzymatic nitrate reduction. Nitrite, the product of the reaction, was measured to observe the enzymatic nitrate reduction in the reaction media. Methyl viologen was observed as the most efficient mediator among those tested, while azure A showed the highest electron efficiency at the intrinsic reduction potential when the mediated enzyme reactions were carried out with the freely solubilized mediator. The electron transfer of azure A with respect to time was due to the adhesion of azure A to the hydrophilic surface during the reduction. In addition, the use of the adsorbed mediator on conductive activated carbon was proposed to inhibit the change in the electron transfer rate during the reaction by maintaining a constant mediator concentration and active surface area of the electrode. Azure A showed better than nitrite formation than methyl viologen when used with activated carbon.


  • 주제어

    nitrate reductase .   azure A .   bioelectrochemical reaction .   voltammetry .   mediator.  

  • 참고문헌 (14)

    1. Meller, R. B., J. Ronnenberg, W. H. Campbell, and S. Diekmann (1992) Production of nitrate and nitrite in water by immobilized enzymes. Nature 355: 717-719 
    2. Narvaez, A., E. Dominguez, I. Katakis, E. Katz, K. T. Ranjit, I. Ben-Dov, and I. Willer (1997) Microperoxidase- 11-mediated reduction of hemoproteins: Electrocatalyzed reduction of cytochrome c, myglobin and hemoglobin and electroanalytic reduction of nitrate in the presence of cytochrome- dependent nitrate reductase. J. Electroanal. Chem. 430: 227-233 
    3. Kirstein, D., L. Kirstein, F. Scheller, H. Borcherding, J. Ronnenberg, S. Diekmann, and P. Steinrucke (1999) Amperometric nitrate biosensors on the basis of Pseudominas stutzeri nitrate reductase. J. Electroanal. Chem. 474: 43-51 
    4. Cosnier, S., B. Galland, and C. Innocent (1997) New electropolymerizable viologens for the immobilization and electrical wiring of a nitrate reductase. J. Electroanaly. Chem. 433: 113-119 
    5. Choi, J. W., Y. S. Nam, and M. Fujihira (2004) Nanoscale fabrication of biomolecular layer and its application to biodevices. Biotechnol. Bioprocess Eng. 9: 76-85 
    6. Davis, J., D. H. Vaughan, and M. F. Cardosi (1995) Elements of biosensor construction. Enzyme Microb. Technol. 17: 1030-1035 
    7. Yoshimatsu, K., T. Sakurai, and T. Fujiwara (2000) Purification and characterization of dissimilatory nitrate reductase from a denitrifying halophilic archaeon, Haloarcula marismortui. FEBS Lett. 470: 216-220 
    8. Ferreyra, N. F., S. A. Dassie, and V. M. Solis (2000) Electroreduction of methyl viologen in the presence of nitrite: Its influence on enzymatic electrodes. J. Electroanal. Chem. 486: 126-132 
    9. Antipov, A. N., N. N. Lyalikova, T. V. Khiznjak, and N. P. L'vov (1999) Some properties of dissimilatory nitrate reductase lacking molybdenium and molibdenium cofactor. Biochem.(Moscow) 64: 483-487 
    10. Yoon, H. C. and H. S. Kim (2004) Bioelectrocatalyzed signal amplification for affinity interactions at chemically modified electrodes. Biotechnol. Bioprocess Eng. 9: 107-111 
    11. Averill, B. A. and J. M. Tiedje (1982) The chemicals mechanism of microbial denitrification. FEBS Lett. 138: 8-11 
    12. Song, S. H., S. H. Yeom, S. S. Choi, and Y. J. Yoo (2003) Effect of oxidation-reduction potential on denitrification by Ochrobactrum anthropi SY509. J. Microbial. Biotechnol. 13: 473-476     
    13. Sung, D. W., S. H. Song, J. H. Kim, and Y. J. Yoo (2002) Effect of electron donors on nitrate removal by nitrate and nitrite reductases. Biotechnol. Bioprocess Eng. 7: 112-116 
    14. Park, D. H. and Y. K. Park (2001) Bioelectrochemical denitrification by Pseudomonas so. or anaerobic bacterial consortium. J. Microbiol. Biotechnol. 11: 406-411 
  • 이 논문을 인용한 문헌 (1)

    1. 2008. "" Biotechnology and bioprocess engineering, 13(4): 431~435     

 저자의 다른 논문

  • Kim Seung Hwan (1)

    1. 2006 "Characterization of Membrane-bound Nitrate Reductase from Denitrifying Bacteria Ochrobactrum anthropi SY509" Biotechnology and bioprocess engineering 11 (1): 32~37    
  • 송승훈 (6)

  • Yoo, Young-Je (66)

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기