본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Biotechnology and bioprocess engineering v.10 no.1, 2005년, pp.52 - 59   피인용횟수: 6

Saccharification of Foodwastes Using Cellulolytic and Amylolytic Enzymes from Trichoderma harzianum FJ1 and Its Kinetics

Kim Kyoung-Cheol    (Department of Civil, Geosystem and Environmental Engineering, College of Engineering, Chonnam National University   ); Kim Si-Wouk    (Department of Environmental Engineering, Chosun University   ); Kim Myong-Jun    (Department of Civil, Geosystem and Environmental Engineering, College of Engineering, Chonnam National University   ); Kim Seong-Jun    (Department of Civil, Geosystem and Environmental Engineering, College of Engineering, Chonnam National University  );
  • 초록

    The study was targeted to saccharify foodwastes with the cellulolytic and amylolytic enzymes obtained from culture supernatant of Trichoderma harzianum FJ1 and analyze the kinetics of the saccharification in order to enlarge the utilization in industrial application. T. harzianum FJ1 highly produced various cellulolytic (filter paperase 0.9, carboxymethyl cellulase 22.0, ${\beta}$ -glucosidase 1.2, Avicelase 0.4, xylanase 30.8, as U/mL-supernatant) and amylolytic ( ${alpha}$ -amylase 5.6, ${\beta}$ -amylase 3.1, glucoamylase 2.6, as U/mL-supernatant) enzymes. The $23{\sim}98\;g/L$ of reducing sugars were obtained under various experimental conditions by changing FPase to between $0.2{\sim}0.6\;U/mL$ and foodwastes between $5{\sim}20\%$ (w/v), with fixed conditions at $50^{\circ}C$ , pH 5.0, and 100 rpm for 24 h. As the enzymatic hydrolysis of foodwastes were performed in a heterogeneous solid-liquid reaction system, it was significantly influenced by enzyme and substrate concentrations used, where the pH and temperature were fixed at their experimental optima of 5.0 and $50^{\circ}C$ , respectively. An empirical model was employed to simplify the kinetics of the saccharification reaction. The reducing sugars concentration (X, g/L) in the saccharification reaction was expressed by a power curve ( $X=K{\cdot}t^n$ ) for the reaction time (t), where the coefficient, K and n. were related to functions of the enzymes concentrations (E) and foodwastes concentrations (S), as follow: $K=10.894{\cdot}Ln(E{\cdot}S^2)-56.768,\;n=0.0608{\cdot}(E/S)^{-0.2130}$ . The kinetic developed to analyze the effective saccharification of foodwastes composed of complex organic compounds could adequately explain the cases under various saccharification conditions. The kinetics results would be available for reducing sugars production processes, with the reducing sugars obtained at a lower cost can be used as carbon and energy sources in various fermentation industries.


  • 주제어

    Trichoderma harzianum .   saccharification .   lignocellulolytic enzymes .   foodwastes .   kinetics.  

  • 참고문헌 (32)

    1. Gawande, P. V. and M. Y. Kamat (1998) Preparation, characterization and application of Aspergillus sp. xylanase immobilized on Eudragit S-100. J. Biotechnol. 66: 165-175 
    2. Lee, H. K. and S. I. Hong (1987) Effect of inhibitor on enzymatic hydrolysis of cellulose. Hwahak Konghak 25: 109-114 
    3. Medve, J., J. Karlsson, D. Lee, and F. Tjerneld (1998) Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and Endoglucoanase II from Trichoderma reesei: Adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol. Bioeng. 59: 621-634 
    4. Sethi, B., S. Mishra, and V. S. Bisaria (1998) Adsorption characteristics of cellulases from a constitutive mutant of Trichoderma reesei. J. Ferment. Bioeng. 86: 233-235 
    5. Tengborg, C., M. Galbe, and G. zacchi (2001) Influence of enzyme loading and physical parameters on the enzymatic hydrolysis of steam-pretreated softwood. Biotechnol. Prog. 17: 110-117 
    6. Wu, J. and L. K. Ju (1998) Enhancing enzymatic saccharification of waste newsprint by surfactant addition. Biotechnol. Prog. 14: 649-652 
    7. Converse, A. O., H. Ooshima, and D. S. Burns (1990) Kinetics of enzymatic hydrolysis of lignocellulosic materials based on surface area of cellulose accessible to enzyme and enzyme adsorption on lignin and cellulose. Appl. Biochem. Biotechnol. 24/25: 67-73 
    8. Ooshima, H., D. S. Burns, and A. O. Converse (1990) Adsorption of cellulase from Trichoderma reesei on cellulose and lignacious residue in wood pretreated by dilute sulfuric acid with explosive decompression. Biotechnol. Bioeng. 36: 446-452 
    9. Svetlana, V., R. M. Mark, and F. O. David (1997) Kinetic model for batch cellulase production by Trichoderma reesei RUT C30. J. Biotechnol. 54: 83-94 
    10. Thomas, M. W. and K. M. Bhat (1988) Methods for measuring cellulase activities. Method. Enzymol. 160: 87-112 
    11. Desai, S. G. and A. O. Converse (1997) Substrate reactivity as a function of the extent of reaction in the enzymatic hydrolysis of lignocellulose. Biotechnol. Bioeng. 56: 650- 655 
    12. Ingesson, H., G. Zacchi, B. Yang, A. R. Esteghlalian, and J. N. Saddler (2001) The effect of shaking regime on the rate and extent of enzymatic hydrolysis of cellulose. J. Biotechnol. 88: 177-182 
    13. Sun, Y. and J. Cheng (2002) Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technol. 83: 1-11 
    14. Allen, S. G., D. Schulman, J. Lichwa, and M. J. Antal Jr (2001) A comparison between hot liquid water and steam fractionation of corn fiber. Ind. Eng. Chem. Res. 40: 2934- 2941 
    15. Lee, J. H., S. O. Lee, G. O. Lee, E. S. Seo, S. S. Chang, S. K. Yoo, D. W. Kim, D. F. Day, and D. Kim (2003) Transglycosylation reaction and raw starch hydrolysis by novel carbohydrolase from Lipomyces starkeyi. Biotechnol. Bioprocess Eng. 8: 106-111 
    16. Wan Mohtar, Y., M. I. Massadeh, and J. Kader (2000) Solid substrate and submerged culture fermentation of sugar cane bagasse for the production of cellulase and reducing sugars by a local isolate, Aspergillus terreus SUK-1. J. Microbiol. Biotechnol. 10: 770-775 
    17. Bhat, M. K. and S. Bhat (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnology Adv. 15: 583-620 
    18. Park, E. Y., Y. Ikeda, and N. Okuda (2002) Empirical evaluation of cellulose on enzymatic hydrolysis of waste office paper. Biotechnol. Bioprocess Eng. 7: 268-274     
    19. Min, S. Y., B. G. Kim, C. Lee, H. G. Hur, and J. H. Ahn (2002) Purification, characterization, and cDNA cloning of xylanase from fungus Trichoderma strain SY. J. Microbiol. Biotechnol. 12: 890-894     
    20. Mansfield, S. D., C. Mooney, and J. N. Saddler (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol. Prog. 15: 804-816 
    21. Kim, K. C., S. S. Yoo, Y. A. Oh, and S. J. Kim (2003) Isolation and characteristics of Trichoderma harzianum FJ1 producing cellulases and xylanase. J. Microbiol. Biotechnol. 12: 1-8     
    22. Ooshima, H., M. Kurakake, J. Kato, and Y. Harano (1991) Enzymatic activity of cellulase adsorbed on cellulose and its change during hydrolysis. Appl. Biochem. Biotechnol. 31: 253-266 
    23. Techapun, C., N. Poosaran, M. Watanabe, and K. Sasaki (2003) Thermostable and alkaline-tolerant microbial cellulase- free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocesses: A review. Process Biochem. 38: 1327-1340 
    24. Anuradha, R., A. K. Suresh, and K. V. Venkatesh (1999) Simultaneous saccharification and fermentation of starch to lactic acid. Process Biochem. 35: 367-375 
    25. Zhang, S., D. E. Wolfgang, and D. B. Wilson (1999) Substrate heterogeneity causes the nonlinear kinetics of insoluble cellulose hydrolysis. Biotechnol. Bioeng. 66: 35-41 
    26. Son, C. J., S. Y. Chung, J. E. Lee, and S. J. Kim (2002) Isolation and cultivation characteristics of Acetobacter xylinum KJ-1 producing bacterial cellulose in shaking cultures. J. Microbiol. Biotechnol. 12: 722-728     
    27. Yoo, S. S., K. C. Kim, Y. A. Oh, S. Y. Chung, and S. J. Kim (2002) The high production of cellulolytic enzymes using cellulosic wastes by a fungus, strain FJ1, Kor. J. Microbiol. Biotechnol. 30: 172-176     
    28. Kim, E. K., D. C. Irwin, L. P. Walker, and D. B. Wilson (1998) Factorial optimization of a six-cellulase mixture. Biotechnol. Bioeng. 58: 494-501 
    29. Sohn, C. B., M. H. Kim, J. S. Bae, and C. H. Kim (1992) $\beta$-Amylase system capable of hydrolyzing raw starch granules from Bacillus polymyxa No. 26 and bacterial identification. J. Microbiol. Biotechnol. 2: 183-188 
    30. JI, G. E., H. K. Han, S. W. Yun, and S. L. Rhim (1992) Isolation of amylolytic Bifidobacterium sp. Int-57 and characterization of amylase. J. Microbiol. Biotechnol. 2: 85-91 
    31. Gan, Q., S. J. Allen, and G. Taylor (2003) Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: An overview, an experimental study and mathematical modeling. Process Biochem. 38: 1003-1018 
    32. Lin, J, Q., S. M. Lee, and Y. M. Koo (2001) Hydrolysis of paper mill sludge using an improved enzyme system. J. Microbiol. Biotechnol. 11: 362-368 
  • 이 논문을 인용한 문헌 (6)

    1. 2007. "" Biotechnology and bioprocess engineering, 12(2): 147~151     
    2. 2007. "" Journal of microbiology and biotechnology, 17(12): 2076~2080     
    3. Jin, Sheng-De ; Kim, Seong-Jun 2007. "Anaerobic Digestion Efficiency of Remainder from Bacterial Cellulose Production Process using Food Wastes" 한국생물공학회지 = Korean journal of biotechnology and bioengineering, 22(2): 97~101     
    4. 2008. "" Biotechnology and bioprocess engineering, 13(2): 182~188     
    5. 2009. "" Biotechnology and bioprocess engineering, 14(4): 391~399     
    6. Li, Hong-Xian ; Kim, Seong-Jun 2009. "Comparison of cellulolytic enzyme productivities in various semicontinuous culture modes of Trichoderma inhamatum KSJ1" KSBB Journal, 24(1): 70~74     

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기