본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of plant biology = 식물학회지 v.48 no.1, 2005년, pp.1 - 15   피인용횟수: 5

Brassinosteroid Biosynthesis and dwarf Mutants

Kwon Mi    (Department of Biological Science, College of Natural Sciences NS70, Seoul National University   ); Choe Sunghwa    (Department of Biological Science, College of Natural Sciences NS70, Seoul National University  );
  • 초록

    Plants enjoy their entire life exactly where they were initially rooted. Because of this fixed life pattern, plants have to devise a different type of strategy than animals to survive the numerous biotic and abiotic challenges. Many different plant hormones that act alone or in concert underpin these mechanisms. Brassinosteroids (BRs) collectively refer to plant-originated $5\alpha-cholestane$ steroids that elicit growth stimulation in nano-or micromolar concentrations. BRs that are biosynthesized using sterols as precursors are structurally similar to the cholesterol derived, mammalian steroid hormones, insect molting hormones and ecdysteroids. BRs have been known for decades to be effective in plant growth promotion. However, definitive evidence for their roles in growth and development remained unclear until the recent characterization of BR dwarf mutants isolated from Arabidopsis and other plants. This review aims to provide a cohesive summary of information obtained from the molecular genetic characterization of mutants that are defective in sterol and BR biosynthetic pathways.


  • 참고문헌 (54)

    1. Arteca R (1996) Plant growth substances: Principles and applications. Chapman and Hall, New York 
    2. Bishop GJ, Harrison K, Jones JD (1996) The tomato Dwarf gene isolated by heterologous transposon tagging encodes the first member of a new cytochrome P450 family. Plant Cell 8: 959-969 
    3. Choe S, Oilkes BP, Fujioka S, Takatsuto S, Sakurai A, Feldmann KA (1998) The OWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22.a hydroxylation steps in brassinosteroid biosynthesis, Plant Cell 10: 231-243 
    4. Chory J, Nagpal P, Peto CA (1991) Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell 3: 445-459 
    5. Fujioka S, Sakurai A (1997) Brassinosteroids. Nat Prod Rep 14: 1-10 
    6. Fujioka S, Takatsuto S, Yoshida S (2002) An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway. Plant Physiol 130: 930-939 
    7. Kang JG, Yun J. Kim DH, Chung KS, Fujioka S, Kim JI, Dae HW, Yoshida S, Takatsuto S, Song PS, Park CM (2001) Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growth. Cell 105: 625-636 
    8. Klahre U, Noguchi T, Fujioka S, Takatsuto S, Yokota T, Nomura T, Yoshida S, Chua NH (1998) The Arabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis. Plant Cell 10: 1677-1690 
    9. Lecain E, Chenivesse X, Spagnoli R, Pompon D (1996) Cloning by metabolic interference in yeast and enzymatic characterization of Arabidopsis thaliana sterol delta 7 -reductase. J Biol Chem 271: 10866-10873 
    10. Lorence MC, Murry BA, Trant JM, Mason JI (1990) Human 3 beta-hydroxysteroid dehydrogenase/delta$^{5-4}$-isomerase from placenta: expression in nonsteroidogenic cells of a protein that catalyzes the dehydrogenation/isomerization of C21 and C19 steroids. Endocrinology 126: 2493 -2498 
    11. Mandava N (1988) Plant growth-promoting brassinosteroids. Ann Rev Plant Physiol Plant Mol Biol 39: 23-52 
    12. Souter M, Topping J, Pullen M, Friml J, Palme K, Hackett R, Grierson D, Lindsey K (2002) Hydra mutants of Arabidopsis are defective in sterol profiles and auxin and ethylene signaling. Plant Cell 14: 1017-1031 
    13. Bishop GJ, Nomura T, Yokota T, Harrison K, Noguchi T, Fujioka S, Takatsuto S, Jones JD, Kamiya Y (1999) The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc Natl Acad Sci USA 96: 1761-1766 
    14. Clouse SD, Sasse JM (1998) Brassinosteroids: Essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49: 427-451 
    15. Li J, Nagpal P, Vitart V, McMorris TC, Chory J (1996) A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272: 398-401 
    16. Choe S, Tanaka A, Noguchi T, Fujioka S, Takatsuto S, Ross AS, Tax FE, Yoshida S, Feldmann KA (2000) Lesions in the sterol delta reductase gene of Arabidopsis cause dwarfism due to a block in brassinosteroid biosynthesis. Plant J 21: 431-443 
    17. McNellis TW, Deng XW (1995) Light control of seedling morphogenetic pattern. Plant Cell 7: 1749-1761 
    18. Asami T, Min YK, Nagata N, Yamagishi K, Takatsuto S, Fujioka S, Murofushi N, Yamaguchi I, Yoshida S (2000) Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiol 123: 93-100 
    19. Azpiroz R, Wu Y, LoCascio JC, Feldmann KA (1998) An Arabidopsis brassinosteroid dependent mutant is blocked in cell elongation. Plant Cell 10: 219-230 
    20. Choe S, Noguchi T, Fujioka S, Takatsuto S, Tissier CP, Gregory BO, Ross AS, Tanaka A, Yoshida S, Tax FE, Feldmann KA (1999b) The Arabidopsis dwf7/ste1 mutant is defective in the ${\Delta}^7$ sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell 11 : 207-221 
    21. Choe S, Schmitz RJ, Fujioka S, Takatsuto S, Lee MO, Yoshida S, Feldmann KA, Tax FE (2002) Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3b-like kinase. Plant Physiol 130: 1506-1515 
    22. Sakurai A, Fujioka S (1996) Catharanthus roseus (Vinca rosea): in vitro production of brassinosteroids. In Y Bajaj, ed, Biotechnology in Agriculture and Forestry, Vol 37. Springer-Verlag, Berlin, pp 87-96 
    23. Diener AC, Li H, Zhou W, Whoriskey WJ, Nes WO, Fink GR (2000) Sterol methyltransferase 1 controls the level of cholesterol in plants. Plant Cell 12: 853-870 
    24. Husselstein T, Gachotte D, Desprez T, Bard M, Benveniste P (1996) Transformation of Saccharomyces cerevisiae with a eDNA encoding a sterol C-methyltransferase from Arabidopsis thaliana results in the synthesis of 24ethyl sterols, FEBS Lett 381: 87-92 
    25. Thompson MJ, Meudt WJ, Mandava NB, Dutky SR, Lusby WR, Spaulding DW (1982) Synthesis of brassinosteroids and relationship of structure to plant growth-promoting effects. Steroids 39: 89-105 
    26. Crozier A, Kamiya Y, Bishop GJ, Yokota T (2000) Biosynthesis of hormones and elicitor molecules. In B Buchanan, W Gruissem, R Jones, eds, Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville 
    27. Koka CV, Cerny RE, Gardner RG, Noguchi T, Fujioka S, Takatsuto S, Yoshida S, Clouse SD (2000) A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response. Plant Physiol 122: 85-98 
    28. Nomura T, Kitasaka Y, Takatsuto S, Reid JB, Fukami M, Yokota T (1999) Brassinosteroid/sterol synthesis and plant growth as affected by Ika and Ikb mutations of pea. Plant Physiol 119: 1517-1526 
    29. Kauschmann A, Jessop A, Koncz C, Szekeres M, Willmitzer L, Altmann T (1996) Genetic evidence for an essential role of brassinosteroids in plant development. Plant J 9: 701-713 
    30. Sekimata K, Kimura T, Kaneko I, Nakano T, Yoneyama K, Takeuchi Y, Yoshida S, Asami T (2001) A specific brassinosteroid biosynthesis inhibitor, Brz 2001: evaluation of its effects on Arabidopsis, cress, tobacco, and rice. Planta 213: 716-721 
    31. Asami T, Yoshida S (1999) Brassinosteroid biosynthesis inhibitors. Trends Plant Sci 4: 348-353 
    32. Choe S, Oilkes BP, Gregory BD, Ross AS, Yuan H, Noguchi T, Fujioka S, Takatsuto S, Tanaka A, Yoshida S, Tax FE, Feldmann KA (1999a) The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. Plant Physiol 119: 897-907 
    33. Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15: 2900-2910 
    34. Jang JC, Fujioka S, Tasaka M, Seto H, Takatsuto S, Ishii A, . Aida M, Yoshida S, Sheen J (2000) A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of Arabldopsis thaliana. Genes Dev 14: 1485-1497 
    35. Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S, Yoshida S (2003) Organ specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol 131: 287-297 
    36. Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA (2001) Overexpression of OWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J 26: 573-582 
    37. He JX, Fujioka S, Li TC, Kang SG, Seto H, Takatsuto S, Yoshida S, Jang JC (2003) Sterols regulate development and gene expression in Arabidopsis. Plant Physiol 131: 1258-1269 
    38. Schaeffer A, Bronner R, Benveniste P, Schaller H (2001) The ratio of campesterol to sitosterol that modulates growth in Arabidopsis is controlled by STEROL METHYLTRANSFERASE 2;1. Plant J 25: 605-615 
    39. Wang ZY, Nakano T, Gendron J, He J, Chen M, Vafeados D, Yang Y, Fujioka S, Yoshida S, Asami T, Chory J (2002) Nuclear-localized BZR1 mediates brassinosteroid induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell 2: 505 513 
    40. Asami T, Mizutani M, Fujioka S, Goda H, Min YK, Shimada Y, Nakano T, Takatsuto S, Matsuyama T, Nagata N, Sakata K, Yoshida S (2001) Selective interaction of triazole derivatives with DWF4, a cytochrome P450 monooxygenase of the brassinosteroid biosynthetic pathway, correlates with brassinosteroid deficiency in planta. J Biol Chem 276: 25687-25691 
    41. Kim GT, Tsukaya H, Uchirniya H (1998) The ROTUNDIFOLlA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells. Genes Dev 12: 2381-2391 
    42. Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Redei Gp, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85: 171-182 
    43. Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54: 137-164 
    44. Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, Inukai Y, Fujioka S, Shimada Y, Takatsuto S, Agetsuma M, Yoshida S, Watanabe Y, Uozu S, Kitano H, Ashikari M, Matsuoka M (2002) Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J 32: 495-508 
    45. Iwasaki T, Shibaoka H (1991) Brassinosteroids act as regulators of tracheary-element differentiation in isolated Zinnia mesophyll cells. Plant Cell Physiol 32: 1007-1014 
    46. Noguchi T, Fujioka S, Choe S, Takatsuto S, Tax FE, Yoshida S, Feldmann KA (2000) Biosynthetic pathways of brassinolide in Arabidopsis. Plant Physiol 124: 201-209 
    47. Asami T, Mizutani M, Shimada Y, Goda H, Kitahata N, Sekimata K, Han SY, Fujioka S, Takatsuto S, Sakata K, Yoshida S (2003) Triadimefon, a fungicidal triazole-type P450 inhibitor, induces brassinosteroid deficiency-like phenotypes in plants and binds to DWF4 protein in the brassinosteroid biosynthesis pathway. Biochem J 369: 71-76 
    48. Benveniste P (2002) Sterol metabolism. In C Somerville, E Meyerowitz, eds, The Arabidopsis Book. American Society of Plant Biologists, Rockville 
    49. Carland FM, Fujioka S, Takatsuto S, Yoshida S, Nelson T (2002) The identification of CVP1 reveals a role for sterols in vascular patterning. Plant Cell 14: 2045-2058 
    50. Grove M, Spencer G, Rohwedder W (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281: 216-217 
    51. Schrick K, Mayer U, Horrichs A, Kuhnt C, Bellini C, Dangl J, Schmidt J, Jurgens G (2000) FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis. Genes Dev 14: 1471-1484 
    52. Fujioka S, Inoue T, Takatsuto S, Yanagisawa T, Yokota T, Sakurai A (1995) Biological activities of biosynthetically-related congeners of brassinolide. Biosci Biotech Biochem 59: 1973-1975 
    53. Grebenok RJ, Ohnmeiss TE, Yamamoto A, Huntley ED, Galbraith DW, Della Penna D (1998) Isolation and characterization of an Arabidopsis thaliana C-8,7 sterol isomerase: functional and structural similarities to mammalian C-8,7 sterol isomerase/emopamil-binding protein. Plant Mol Biol 38: 807-815 
    54. Yokota T (1999) The History of Brassinosteroids: Discovery to Isolation of Biosytnthesis and Signal Transduction Mutants. In A Sakurai, T Yokota, S Clouse, eds, Brassinosteroids: Steroidal Plant Hormones. Springer-Verlag, Tokyo 
  • 이 논문을 인용한 문헌 (5)

    1. 2005. "" Journal of plant biology = 식물학회지, 48(2): 237~244     
    2. 2006. "" Journal of plant biology = 식물학회지, 49(1): 61~69     
    3. 2006. "" Journal of plant biology = 식물학회지, 49(2): 160~166     
    4. 2007. "" Journal of plant biology = 식물학회지, 50(3): 230~240     
    5. 2008. "" Journal of plant biology = 식물학회지, 51(3): 221~226     

 저자의 다른 논문

  • 권미 (4)

    1. 1991 "낙우송(落羽松)(Taxodium distichum Rich.) 지재(枝材)의 압축이상재(壓縮理想材) 및 대응재(對應材)에 관한 해부학적(解剖學的) 특성(特性)" 韓國林學會誌 = Journal of Korean Forest Society 80 (3): 296~302    
    2. 1993 "갈색부후균(Lentinus lepideus)에 의해 부후된 소나무 재(Pinus densiflora S. et Z.)의 해부학적 특성" 목재공학 = Journal of the Korean wood science and technology 21 (1): 39~50    
    3. 2005 "A Double Mutant for the CYP85A1 and CYP85A2 Genes of Arabidopsis Exhibits a Brassinosteroid Dwarf Phenotype" Journal of plant biology = 식물학회지 48 (2): 237~244    
    4. 2006 "An Arabidopsis short root and dwarfism Mutant Defines a Novel Locus That Mediates Both Cell Division and Elongation" Journal of plant biology = 식물학회지 49 (1): 61~69    
  • Choe, Sung-Hwa (8)

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 이용한 콘텐츠
이 논문과 함께 출판된 논문 + 더보기