본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of plant biology = 식물학회지 v.48 no.1, 2005년, pp.120 - 127   피인용횟수: 3

Functional Mode of NtHSP17.6, a Cytosolic Small Heat-Shock Protein from Nicotiana tabacum

Yoon Hae-jeong    (Institute of Molecular Biology and Genetics, Seoul National University   ); Kim Keun Pill    (Institute of Molecular Biology and Genetics, Seoul National University   ); Park Soo Min    (Institute of Molecular Biology and Genetics, Seoul National University   ); Hong Choo Bong    (Institute of Molecular Biology and Genetics, Seoul National University  );
  • 초록

    Small heat-shock proteins (sHsps) are ubiquitous stress proteins with molecular chaperone activity. They share characteristic homology with the $\alpha-crystallin$ protein of the mammalian eye lens as well as being ATP. independent in their chaperone activity. We isolated a clone for a cytosolic class I sHsp, NtHSPI7.6, from Nicotiana tabacum, and analyzed its functional mode for such activity. Following its transformation into Escherichia coli and its over-expression, NtHSP17.6 was purified and examined in vitro. This purified NtHSP17.6 exhibited typical chaperone activity in a light­scattering test It was enable to protect a model substrate, firefly luciferase, from heat-induced aggregation. Non­denaturing PAGE showed that NtHSP17.6 formed a dodecamer in its native conformation, and was bound to its substrate under heat stress. A labeling test with bis-ANS indicated that this binding might be linked to newly exposed hydrophobic sites of the NtHSP17.6 complexes during heat shock. Based on these data, we suggest that NtHSP17.6 is a molecular chaperone that functions as a dodecamer in a heat-induced manner.


  • 참고문헌 (52)

    1. Agashe VR, Hartl F-U (2000) Roles of molecular chaperones in cytoplasmic protein folding. Cell Dev Biol 11: 15-25 
    2. Anderson LO, Borg H, Mikaelsson M (1972) Molecular weight estimations of proteins by electrophoresis in polyacrylamide gels of graded porosity. FEBS Lett 20: 199-202 
    3. Ehrnsperger M, Lilie H, Gaestel M, Buchner J (1999) The dynamics of Hsp25 quaternary structure. J Biol Chem 274: 14867-14874 
    4. Horwitz J (1992) Alpha-crystalline can function as a molecular chaperone. Proc Natl Acad Sci USA 89: 10449-10453 
    5. Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 277: 38468-38475 
    6. Park SM, Hong CB (2002) Class I small heat-shock protein gives thermotolerance in tobacco. J Plant Physiol 159: 25-30 
    7. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning; A Laboratory Manual, Ed 2. Cold Spring Harbor Laboratory Press, New York 
    8. Wang K, Spector A (2000) $\alpha$-Crystalline prevents irreversible protein denaturation and acts cooperatively with other heat-shock proteins to renature and stabilize partially denatured protein in an ATP-dependent manner. Eur J Biochem 267: 4705-4712 
    9. Waters ER, Lee G, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Biol 47: 325-338 
    10. de Jong WW, Leunissen JAM, Voorter CEM (1993) Evolution of the $\alpha$-crystalline/small heat shock protein family. Mol Biol Evol 10: 103-126 
    11. Haslbeck M, Walke S, Stromer T, Ehrnsperger M, White HE, Chen S, Saibil HR, Buchner J (1999) Hsp26: A temperature-regulated chaperone. EMBO J 18: 6744-6751 
    12. Yu JH (2004) Functional analyses of eytosolic small heat shock protein and mitochondrial small heat shock protein in Nicotiana tabacum. M.S. thesis, Seoul National University, Seoul 
    13. Basha E, Lee GJ, Demeler B, Vierling E (2004b) Chaperone activity of cytosolic small heat shock proteins from wheat. FEBS Lett 271 : 1426-1436 
    14. Jaenicke R (1995) Folding and association versus misfolding and aggregation of proteins. Phil Trans R Soc Land B Biol Sci 348: 97-105 
    15. Joe MK, Park SM, Lee YS, Hwang OS, Hong CB (2000) High temperature stress resistance of Escherichia coli induced by a tobacco class I low molecular weight heat-shock protein. Mol Cells 5: 519-524 
    16. Schumacher RJ, Hurst R, Sullivan WP, McMahon NJ, Toft DO, Matts RL (1994) ATP dependent chaperoning activity of reticulocyte lysate. J Biol Chem 269: 9493-9499 
    17. Kim KP, Joe MK, Hong CB (2004) Tobacco small heatshock protein, NtHSP18.2, has broad substrate range as a molecular chaperone. Plant Sci 167: 1017-1025 
    18. Radford SE (2000) Protein folding: Progress made and promises ahead. Trends Biochem Sci 25: 611-618 
    19. Basha E, Lee GJ, Breci LA, Hausrath AC, Buan NR, Giese KC, Vierling E (2004a) The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions. J Biol Chem 279: 75667575 
    20. Fink AL (1999) Chaperone-mediated protein folding. Physiol Rev 79: 425-449 
    21. van Montfort R, Slingsby C, Vierling E (2002) Structure and function of the small heat shock protein/a-crystallin family of molecular chaperones., In AL Horwich, ed, Protein Folding in the Cell. Academic Press, New York, pp105-156 
    22. Schlieker C, Bukau B, Mogk A (2002) Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: Implications for their applicability in biotechnology. J Biotech 96: 13-21 
    23. Ehrnsperger M, Graber S, Gaestel M, Buchner J (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16: 221-229 
    24. Lee GR, Roseman HR, Vierling E (1997) A small heat shock protein stably binds heat denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16: 659-671 
    25. Mogk A, Tomoyasu T, Goloubinoff P, Rudiger S, Roder D, Langen H, Bukau B (1999) Identification of thermolabile Escherichia coli proteins: Prevention and reversion of aggregation by DnaK and ClpB. EMBO J 18: 6934-6949 
    26. Ellis RJ (1997) Molecular chaperones: Avoiding the crowd. Curr Biol 7: R531-R533 
    27. Scharf KD, Siddique M, Vierling E (2001) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47: 325-338 
    28. Cho EK, Hong CB (2004) Molecular cloning and expression pattern analyses of heat shock protein 70 genes from Nicotiana tabacum. J Plant Biol 47: 149-159     
    29. Jinn TL, Yeh YC, Lin CY (1989) Stabilization of soluble proteins in vitro by heat shock protein-enriched ammonium sulfate fraction from soybean seedlings. Plant Cell Physiol 30: 463-469 
    30. Smykal P, Hrdy I, Pechan PM (2000) High-molecular-mass complexes formed in vivo contain small Hsps and Hsp70 and display chaperone-like activity. Eur J Biochem 267: 2195-2207 
    31. Ehrnsperger M, Hergersberg C, Wienhues U, Nichtl A, Buchner J (1998) Stabilization of proteins and peptides in diagnostic immunological assays by the molecular chaperone Hsp25. Anal Biochem 259: 218-225 
    32. Sanger K, Nicklen S, Coulson AR (1977) DNA sequencing with chain-termination inhibitors. Proc Natl Acad Sci USA 74: 5463-5467 
    33. de Jong WW, Caspers GJ, Leunissen JAM (1998) Genealogy of the $\alpha$-crystallin/small heat-shock protein superfamily. Intl J Biol Macromol 22: 151-162 
    34. Narberhaus F (2002) $\alpha$-Crystalline-type heat shock proteins: Socializing minichaperones in the context of a multichaperone network. NMBR 66: 64-93 
    35. Nover L (1990) Heat Shock Response. CRC Press, Boca Raton 
    36. Waters ER, Vierling E (1999) The diversification of plant cytosolic small heat shock proteins preceded the divergence of mosses. Mol Biol Evol 16: 127-139 
    37. Abdulle R, Mohindra A, Fernando p, Heikkia JJ (2002) Xenopus small heat shock proteins, Hsp30C and Hsp 300, maintain heat- and chemically denatured luciferase in a folding competent state. Cell Stress Chaper 7: 6-16 
    38. Haslbeck M (2000) sHsps and their role in the chaperone network. Cell Mol Life Sci 59: 1649-1657 
    39. Levy EJ, McCarty J, Bukau B, Chirico WJ (1995) Conserved ATPase and luciferase refolding activities between bacteria and yeast Hsp70 chaperones and modulators. FEBS Lett 368: 435-440 
    40. Park SM (2002) Structural and functional diversity of small heat shock proteins in Nicotiana tabacum. Ph.D. thesis, Seoul National University, Seoul 
    41. Sharma KK, Kaur H, Kumar GS, Kester K (1998) Interaction of 1,1'-bis (4 anilino)naphthalene-5,5'-disulfonic acid with $\alpha$-crystalline. J Biol Chem 273: 8965-8970 
    42. Vierling E (1991) The role of heat shock-proteins in plant. Annu Rev Plant Physiol Plant Mol Bol 42: 579-620 
    43. Stromer T, Ehrnsperger M, Gaestel M, Buchner J (2003) Analysis of the interactions of small heat shock proteins with unfolding proteins. J Biol Chem 278: 18015-18021 
    44. Caspers GJ, Leunissen JAM, de Jong WW (1995) The expanding small heat-shock protein family and structure predictions of the conserved 'alpha-crystalline domain'. J Mol Evol 40: 238-248 
    45. Fu X, Chang Z (2004) Temperature-dependent subunit exchange and chaperone-like activities of Hsp16.3, a small heat shock protein from Mycobacterium tuberculosis. Biochem Biophys Res Comm 316: 291-299 
    46. Mogk A, Deuerling E, Vorderwulbecke S, Vierling E, Bernd B (2003) Small heat shock proteins, ClpB and the DnaK system, form a functional triad in reversing protein aggregation. Mol Microbiol 50: 585-595 
    47. Veinger L, Diamant S, Buchner J, Goloubinoff P (1998) The small heat shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multi-chaperone network. J Biol Chem 273: 11032-11037 
    48. Plesofsky-Vig N, Brambl R (1995) Disruption of the gene for hsp30, an a-crystalline-related heat shock protein of Neurospora crassa, causes defects in thermotolerance. Proc Natl Acad Sci USA 92: 537-545 
    49. Horwich AL, Weissman JL (1997) Deadly conformations protein misfolding in prion disease. Cell 74: 909-917 
    50. Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122: 189-198 
    51. Das KP, Surewicz WK (1995) Temperature-induced exposure of hydrophobic surfaces and its effect on the chaperone activity of $\alpha$-crystalline. FEBS Lett 369: 321-325 
    52. Kim KK, Kim R, Kim SH (1998) Crystal structure of a small heat shock protein. Nature 394: 595-599 
  • 이 논문을 인용한 문헌 (3)

    1. 2006. "" Journal of plant biology = 식물학회지, 49(6): 484~490     
    2. 2006. "" Journal of plant biology = 식물학회지, 49(3): 212~217     
    3. 2007. "" Journal of plant biology = 식물학회지, 50(2): 167~173     

 저자의 다른 논문

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 이용한 콘텐츠
이 논문과 함께 출판된 논문 + 더보기