본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

The Impact of Southern Ocean Thermohaline Circulation on the Antarctic Circumpolar Current Transport

김성중    (한국해양연구원부설극지연구소   ); 이방용    (한국해양연구원부설극지연구소  );
  • 초록

    The observed ocean barotropic circulation is not completely explained by the classical wind-driven circulation theory. Although it is believed that the thermohaline forcing plays a role in the ocean barotropic circulation to some degree, how much the thermohaline forcing contributes to the barotropic circulation is not well known. The role of thermohaline circulation driven by changes in temperature and salinity in the Southern Ocean (SO) water masses on the Antarctic Circumpolar Current (ACC) transport is investigated using a coupled ocean - atmosphere - sea ice - land surface climate system model in a Last Glacial Maximum (LGM) context. Withthe implementation of glacial boundary conditions in a coupled model, a substantial increase in the ACC transport by about 75% in 80 years of integration and 25% in the near LGM equilibrium is obtained despite of the decreases in the magnitude of wind stresses over the SO by 33% in the transient time and 20% in the near-equilibrium. This result suggests that the increase in the barotropic ACC transport is due to factors other than the wind forcing. The change in ocean thermohaline circulation in the SO seems to play a significant role in enhancing the ACC transport in association with the change in the bottom pressure torque.


  • 주제어

    Antarctic Circumpolar Current .   Barotropic Circulation .   Thermohaline Forcing .   Antarctic Bottom Water .   Coupled Model .   Water Mass.  

  • 참고문헌 (37)

    1. Fieux, M., C. Andrie, P. Delecluse, A.G. Ilahude, A. Kartavtseff, F. Mantisi, R. Molcard, and J.C. Swallow. 1994. Measurements within the Pacific Indian Ocean throughflow region. Deep-Sea Res., 41, 1091-1130 
    2. Gordon, AL. 1986. Interocean exchange of thermocline water. J. Geophys. Res., 91, 5037-5046 
    3. Hidaka, K. and M. Tsuchiya. 1953. On the Antarctic Circumpolar Current. J. Mar. Res., 12, 214-222 
    4. Kim, S.-J., G.M. Flato, and G.J. Boer. 2003. A coupled climate model simulation of the Last Glacial Maximum, Part 2: approach to equilibrium. Clim. Dyn., 20, 635-661 
    5. Lukas, R., T. Yamagata, and J.P. McCreary. 1996. Pacific low-latitude western bonndary currents and Indonesian throughflow. J. Geophys. Res., 101, 12209-12216 
    6. McWilliams, J.C., W.R. Holland, and J.S.H. Chow. 1978. A description of numerical Antarctic Circumpolar Currents. Dyn. Atmos. Ocean, 2, 213-291 
    7. Pacanowski, R.C., K. Dixon, and A Rosati. 1993. The GFDL modular ocean model users guide. GFDL Ocean Group Tech Rep 2. Geophysical Fluid Dynamics Laboratory, Princeton, USA, 46pp 
    8. Peltier, W.R. 1994. Ice age paleotopography. Science, 265, 195-201 
    9. Read, J.F. and R.T. Pollard. 1993. Structure and transport of the Antarctic Circumpolar Current and Agulhas Return Current at 40E. J. Geophys. Res., 98(C7), 12281-12295 
    10. Wolff, J.-O., E. Maier-Reimer, and D.J. Olbers. 1991. Wind-driven flow over topography in a zonal-plane channel: a quasi-geostrophic model of the Antarctic Circumpolar Current J. Phys. Oceanogr., 21, 236-264 
    11. Bryan, K. and M.D. Cox. 1972. The circulation of world ocean: A numerical study, I, A homogeneous model. J. Phys. Oceanogr., 2, 319-335 
    12. Fairbanks, R.G. 1989.A 17000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342, 637-642 
    13. Warren, B.A, J.H. LaCase, and P.E. Robins. 1996.On the obscurantist physics of 'Form Drag' in theorizing about the Circumpolar Current. J. Phys. Oceanogr., 26, 2297-2301 
    14. Mertz, G. and D.G. Wright. 1992. Interpretations of the JEBAR term. J. Phys. Oceanogr., 22, 301-305 
    15. Treguier, A.M. and J. C. McWilliams. 1990. Topographic influences on wind-driven, stratified flow in a $\beta$-plane channel: an idealized model for the Antarctic Circumpolar Current. J. Phys. Oceanogr., 20, 321-343 
    16. Macdonald, AM. and C. Wunsch. 1996. An estimate of the global ocean circulation and heat flux. Nature, 382, 436-439 
    17. Rintoul, S.R., C.W. Hughes, and D. Olbers. 2001. The Antarctic Circumpolar Current System in Ocean circulation and climate. Academic Press, Edited by Siedler, G., Church, J., Gould, J 
    18. Gill, AE. and K. Bryan.1971.Effects of geometry on the circulation of a three-dimensional southern-hemisphere ocean model. Deep Sea Res., 18, 685-721 
    19. Greatbatch, R.J., AF. Fanning, and AD. Goulding. 1991. A diagnosis of interpentadal circulation changes in the north Atlantic. J. Geophys. Res., 96(C12), 22009-22023 
    20. Whitworth, T. and R.G. Peterson. 1985. Volume transport of the Antarctic circumpolar current from bottom pressure measurements J. Phys. Oceanogr., 15, 810-816 
    21. Nowlin, W. D., Jr. and J.M. Klinck. 1986. The physics of the Antarctic Circumpolar Current. Review of Geophysics, 24, 469-491 
    22. Semtner, A.J. 1976. A model for thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6, 379-389 
    23. Gates, WL. and AB. Nelson. 1975. Anew (revised) tabulation ofthe Scripps topography on a 1$^{\circ}$ global grid. Part II: ocean depths. R-1227-1-ARPA, The RAND Corporation, Santa Monica, CA, 132 pp 
    24. Bryan, K. and LJ. Lewis. 1979. A water mass model of the world ocean. J. Geophys. Res., 84(C5), 2503-2517 
    25. Gent, P.R. and I.C. McWilliams. 1990. Isopycnal mixing in ocean circulation models. J. Phys. Ocenaogr., 20,150-155 
    26. Kim, S.-J., G.M. Flato, G.J. Boer, and N.A McFarlane, 2002. A coupled climate model simulation of the Last Glacial Maximum, Part 1: Transient multi-decadal response. Clim. Dyn., 19, 515-537 
    27. Toggweiler, J.R. and H. Bjornsson. 2000. Drake Passage and paleoclimate. J. Quat. Sci. 15, 319-328 
    28. Cai, W. 1994. Circulation driven by observed surface thermoha-line fields in a coarse resolution ocean general circulation model. J. Geophys. Res., 99(C5), 10163-10181 
    29. Cai, W. and P.G. Bains. 1996. Interactions between thermoha-line- and wind-driven circulations and their relevance to the dynamics of the Antarctic Circumpolar Current in a coarse-resolution global ocean general circulation model. J. Geophys. Res., 101(C6), 14073-14093 
    30. Munk, W.H. and E. Palmen. 1951. On the dynamics of the Antarctic Circumpolar Currents. Tellus, 3, 53-55 
    31. Flato, G.M. and WD. Hibler. III. 1992. Modelling pack ice as a cavitating fluid. J. Phys. Oceanogr., 22, 626-651 
    32. England, M.H. 1993. On the formation of global-scale water masses in ocean general circulation models. J. Phys. Oceanogr., 23,1523-1552 
    33. Kennet, J.P. 1977.Cenozoic evolution of Antarctic glaciation, the circum-Antarctic oceans and heir impact on global paleoceanography. J. Geophys. Res., 82, 3843-3859 
    34. Pickard, G.L. and W.J. Emery. 1990. Descriptive physical oceanography, Fifth Enlarged Edition (in SI units). Pergamon Press, Oxford, UK 
    35. Orsi, A.H., G.C. Johnson, and J.L. Bullister. 1999. Circulation, mixing, and production of Antarctic Bottom Water. Prog. Oceanogr., 43, 55-109 
    36. Holland, WR. 1973. Baroclinic and topographic influences on the transport in western bonndary currents. Geophys. Fluid Dyn., 4, 187-210 
    37. Stommel, H. 1957. A survey of ocean current theory. Deep Sea Res., 4, 149-184 

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • NDSL :
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기