본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

밀도 클러스터링을 이용한 공간 특성화 시스템 설계 및 구현
Design and Implementation of Spatial Characterization System using Density-Based Clustering

유재현   (인하대학교 컴퓨터정보공학과UU0001092  ); 박태수   (인하대학교 컴퓨터정보공학과UU0001092  ); 안찬민   (인하대학교 컴퓨터정보공학과UU0001092  ); 박상호   (인하대학교 컴퓨터정보공학과UU0001092  ); 홍준식   (영동대학교 전자의용공학부UU0000962  ); 이주홍   (인하대학교 컴퓨터공학부UU0001092  );
  • 초록

    최근 유비쿼터스 컴퓨팅의 관심이 증대되면서, 방대하고 다양한 형태의 데이터에 대한 효율성과 효과성을 고려한 지식 탐사연구의 필요성이 요구된다. 공간 특성화 방법은 공간과 비공간 속성들을 고려하여 특성화 지식을 발견하는 방법으로, 기존의 특성화 방법을 확장하여 공간 영역에 대한 다양한 형태의 지식을 발견할 수 있다. 기존 공간 특성화기법에 대한 연구들은 다음과 같은 문제점을 가진다. 첫째, 기존의 연구는 탐사된 지식의 결과가 다각적인 공간 분석을 수행하지 못하는 문제점을 가진다 둘째, 공간 탐색 시 사용자에 의해 미리 정해진 위치 영역만을 고려하여 탐색함으로 유용한 지식탐사를 보장하지 못하는 문제점을 가진다. 따라서 본 연구에서는 밀도 기반의 클러스터링이 적용된 새로운 공간 특성화기법을 제안한다.


    LRecently, with increasing interest in ubiquitous computing, knowledge discovery method is needed with consideration of the efficiency and the effectiveness of wide range and various forms of data. Spatial Characterization which extends former characterization method with consideration of spatial and non-spatial property enables to find various form of knowledge in spatial region. The previous spatial characterization methods have the problems as follows. Firstly, former study shows the problem that the result of searched knowledge is unable to perform the multiple spatial analysis. Secondly, it is unable to secure the useful knowledge search since it searches the limited spatial region which is allocated by the user. Thus, this study suggests spatial characterization which applies to density based clustering.


  • 주제어

    공간 데이터 마이닝 .   공간 특성화 .   지리 정보 시스템 .   데이터 마이닝.  

 저자의 다른 논문

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기